
Architectural Overview



Background ………………………………………………………………………………………………….................................……………... 3


Overview ……………………………………………………………………………….……………………………………………………................ 4


     World-class developer experience ………………………………………………………………………………………........…….  4


     Distributed by default ………………………………………………………………………………………………………….............…… 4


     Delivered as an API ………………………………………………………………………………………………………………..........….... 4


Data model ……………………………………………………………………………............................................................................ 5


     Document-relational ………………………………………………………………………….…………….........…………………………...5


     Indexes ……………………………………………………………………………………………………………………………………........……. 5


     User-defined functions (UDFs) ………………………………………………………………………………………………....…....…. 5


     Schema………………………………………………………………………………………………………………………….........………………..6


Interfaces ………………………………………………………………………………………………………………………......................……… 6


     Fauna Query Language (FQL) ………………………………………………..………………………………………………………….. 6


Topology …………………………………………………………………………………………………………………………….....................….. 6


     Regions and region groups ……….………………………………………………………………………………………………...…….. 7


     Environments ……………………………….………………………………………………………………………………………………....….. 8


Service architecture ………………………………………………………………………………………………………………................…. 8


     Logical layers …………………………………………………………………………………………………………………....………………... 8


        Routing …………………………………………………………………………………………………………………………......……………... 9


        Query coordination ……………………………………………………………………….....................................................…. 10


        Transaction log ………………………………………………………………….................……………………………………………... 10


        Data storage ……………………………….…………………………………………..................………………………………………... 11


     Task scheduler ………………………………………………………………………...................………………………………………….. 12


     Ancillary services ………………………………………………………………….................…………………………………………….. 12


System properties ……………………………………………………………………………………..………………………………………….. 13


     Scalability ……………………………………………………………………………………………………………….………………………….. 13


     Availability ……………………………………………………....…………………………………………………………………………………. 13


     Durability …………………………………………………………….……………………………………………………………………………... 13


     Performance ……………………………………………….........………………………………………………………………………………. 14


     Consistency ………………………………………………...……………………………………………………………………………………...14


     Security ……………………………………………………………………….........………………………………………………………………. 14


        Identity ………………………..............………………………………………………………………………………………………………… 14


        Attribute-based access control (ABAC) ……………………….………………………………………………………………… 15


        Native Multi-Tenancy……………………………………......………………………………………………………………………………15


        Auditing and logging ………………………………………...............………………………………………………………………… 15


Conclusion …………………………….....................……………………………………………………………………………………………... 15


     References …………………………..…………………………………………………………………………………………………………….. 15


1

2 

3 

3 

3 

3 

4 

4 

4 

5 

5 

5 

5 

6 

6 

7 

7 

8 

9 

9 

10


11 

12 

12 

12 

12 

13 

13 

13 

14 

14 

14 

15 

15 

15 

15 

15



The history of databases can be characterized as long periods of slow evolution punctuated by a few short 

bursts in which dramatically different databases were brought to market.



The business data era was arguably the first such period, marked by the birth of relational databases that 

stored data in tables, allowed complex joins across tables, and exposed data via the Structured Query 

Language (SQL). These relational database management systems are still widely used today, although they 

were built when the primary data consumer was an analyst sitting at a workstation. However, several issues 

with these systems have become obvious as end-users have supplanted data experts as the primary 

consumers of data. For example, SQL exposes data in structures that aren’t compatible with modern software 

development practices, resulting in a proliferation of ORM libraries and an object-relational impedance 

mismatch. SQL itself is not type-safe, which leads to frequent security flaws, and its declarative programming 

model makes any specific query performance profile unknown and unpredictable. Finally, relational 

databases are typically deployed as self-managed or partially-managed instances or clusters that require 

operators to think about hosting, maintenance, and scaling.



Another period of rapid database innovation sprung up decades later with the rise of NoSQL databases, 

particularly the NoSQL subcategory of document databases. These offerings attempted to address the 

shortcomings of relational databases by storing data in formats familiar to developers and promising limited 

operations and infinite scale while sacrificing strong consistency guarantees in favor of eventual consistency. 

In practice, these offerings did not fulfill their full promise because they needed more support for complex 

access patterns (such as performing joins across different types of documents) that are frequently needed, 

and operations became more difficult at the scale of real-world workloads. Additionally, their less stringent 

consistency models pushed complex checks and edge-case handling into application code, creating a non-

trivial burden for developers.



Developers that are building modern applications need the best of both of these worlds. They want the 

power and consistency of traditional relational systems along with the scalability, low management overhead, 

and ergonomics of document systems in a single package.


Background
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World-class Developer Experience


Fundamentally, Fauna’s architecture is entirely in service of providing a best-in-class experience for 

developers, giving them powerful and flexible ways to work with their data

 The heart of Fauna is a document-relational data model that combines the flexibility and familiarity of 

JSON documents with the relationships and querying power of a traditional relational database

 Data is exposed through the powerful Fauna Query Language (FQL), which is Turing complete, allowing 

any arbitrary business logic to run on top of the data

 Transaction code can be stored as User Defined Functions (UDFs) for composability and reusability.

Distributed by Default


Compute workloads are increasingly moving towards the edge, making it important for applications to access 

data across wide geographies with low latency. Fauna makes this possible by replicating data across 

availability zones or regions

 Fauna’s architecture is inspired by the Calvin transaction protocol, which allows Fauna to deliver strictly 

serialized transactions across a designated geography or around the globe

 Fauna can be deployed in a single region or a region group. Data is automatically replicated across zones 

or regions and can be accessed from the nearest region with the highest consistency guarantee.

Delivered as an API


Software is eating the world, and all companies are becoming software companies, making it more critical 

than ever for enterprises to move quickly to compete. Fauna empowers enterprises by removing 

undifferentiated heavy lifting and allowing them to focus on their application

 Fauna exposes data through a single global API endpoint. Developers are not required to manage 

connections or other implementation details. Further, the API endpoint is natively supported by edge 

computing providers

 An intelligent routing layer at Fauna’s edge directs requests sent to the API to the fastest region where 

requests can be served without any client configuration.
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In this paper, we introduce Fauna, a distributed document-relational database delivered as an API. Fauna 

was built from the ground up to serve as the primary operational database for modern applications, bringing 

together the best from current document and relational databases along with many novel innovations in a 

single offering designed to meet the requirements of current applications. The following sections explore its 

unique properties, powerful data model, topology, architecture, and why it is well suited for today’s 

applications.

Overview
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Document-relational


Fauna offers the benefits of both the relational and document models while eliminating many drawbacks. The 

fundamental data building block in Fauna is a semi-structured document, which can include scalar types, 

arrays, and references to other documents. Documents are schema-less by default, but partial or complete 

schemas can be specified and enforced at the collection level. Documents can contain references to other 

documents, allowing developers to execute joins across collections.



Unlike traditional relational databases, the document-relational model provides a high degree of flexibility in 

crafting query responses. A SQL query response is always a two-dimensional set of tuples that conform to a 

schema. Fauna query responses are effectively composable document structures; developers can craft 

results to correspond exactly to what the consuming application needs, building arbitrarily complex response 

structures by stitching together simpler subqueries. This level of FQL query and response expressiveness 

eliminates the issue of object-relational impedance mismatch and, most importantly, comes with no 

consistency or scalability tradeoffs.


Indexes


Fauna supports global secondary indexes, which are consistently maintained as part of transaction 

processing. An index is defined with zero or more lookup terms, which provide a way to partition the index 

into multiple physical components, including zero or more covered values that define its natural sort order.



Like indexes in a relational database, Fauna indexes enforce uniqueness constraints and accelerate 

queries by reducing the cost of selection and ordering where the query is aligned with the index structure. 

Indexes also allow queries to avoid fetching canonical document versions where read fields include the 

index's normative terms and values.



Unlike a relational database, the Fauna query execution engine does not implicitly use indexes based on 

query analysis. Instead, the developer must explicitly query an index by name. This provides the developer 

with a higher degree of control over query execution and a greater level of predictability appropriate to an 

operational database. The developer can avoid fighting the optimizer to choose the correct index. It is 

impossible for the query optimizer to unexpectedly adopt a different execution strategy with an 

exceptionally different performance profile based on subtle changes in dataset properties over time.
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Fauna implements a document-relational data model that is a superset of the relational and document  

paradigms. The top-level container in Fauna is a database that can hold collections of documents or other 

nested databases. Arbitrarily complex transaction code can be passed to Fauna directly from the client or 

stored in a User Defined Function (UDF), which can be invoked from any transaction.

Data Model



Schema


Fauna introduces a sophisticated type system designed to support gradual typing, offering flexibility in the 

earliest phases of development and strict enforcement as applications mature and scale. The type system 

extends to UDFs and computed fields, and a rich migration system makes schema changes transactional 

and ensures that all types adhere to the schema at every point in time. Like traditional Relational 

Databases, Fauna’s type system removes the need to reason about edge cases associated with 

mismatched types, but unlike Relational Databases, it does not come with the baggage of complex schema 

migrations that are error prone, require downtime, and are difficult to reason about. 



Fauna supports schema evolution with zero downtime, allowing changes such as adding new fields, 

changing data types, or enforcing new rules without interrupting application performance or availability. By 

supporting versioned migrations and dynamic schema validation, Fauna ensures that your application can 

evolve alongside your data model without compromising data consistency or scalability.


Fauna Query Language (FQL)


FQL is an elegant query language that features TypeScript-inspired syntax, but specifically tailored towards 

issuing concise relational queries. It brings together the combined power of relational querying and the 

flexibility of documents in a single, unified model. The language natively supports relational features such 

as foreign keys, views, and joins and combines the ability to express declarative queries and functional 

business logic in transactions that are strongly consistent across geographic regions. It is statically typed by 

default, and it features an indexing system that allows developers to take an iterative approach to query 

optimization. All considered, FQL brings together a unique set of characteristics that make it the ideal 

language for modern operational applications.



Developers can execute FQL queries against their data manually via the Fauna dashboard or CLI, or 

General-purpose programming languages lack domain-specific functionality to query and manipulate data out 

of the box, so every database must implement its own domain-specific language (DSL) for data access. Some 

databases expose the data model to developers using an embedded DSL shipped as a library, borrowing 

syntax from a host language. Other databases use a general DSL, such as the Structured Query Language 

(SQL), which stands independently. To meet the needs of modern application developers, Fauna implements 

a new query language as a general DSL that is intuitive, flexible, and type-safe.

Interfaces
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Transaction code meant to be reused across applications can be parameterized and stored as a UDF 

(similar to a SQL stored procedure) to abstract logic from applications that are difficult to upgrade in place. 

UDFs can be configured to execute with a role different from the general request context, ensuring its code 

always executes with a specific set of permissions. UDFs are versioned and can be rolled back if needed.

User-defined Functions (UDFs)



Cloud providers typically offer services in regions that reside in a single city and contain multiple availability 

zones. Regions provide a blast radius containment mechanism should service availability issues occur. They 

also allow customers to understand the physical location of data so they can reason about the latency 

characteristics of accessing data from other physical locations. For some use cases, a regional database is 

sufficient. Still, the rise of edge computing has increased the criticality of pushing data out of a single location 

and making it available for fast access from a broad physical footprint for specific types of workloads.

Topology

Regions and Region Groups


To meet the needs of those modern applications that run at the edge, Fauna replicates data across 

availability zones in a region or regions in a region group. Each Fauna deployment corresponds to a 

geographic area that may be a single region such as Virginia or Portland, a region group that corresponds 

to a broader geography such as the United States or the European Union, or even the entire globe. 

Replication across zones or regions is fast, providing several benefits, including fast local reads and the 

ability to serve requests in the face of a complete zonal or regional failure.

programmatically by using one of Fauna’s lightweight, open source driver implementations in TypeScript, 

Go, and Python. The drivers bring FQL into each language in a way that is natural and idiomatic, providing  

out-of-the-box capabilities such as pagination, templating, retries, throttling, and error handling. In addition, 

the underlying HTTP API is simple enough to call directly within resource-constrained application 

environments such as IoT or via no-code platforms. This new wire protocol and HTTP API have been  

extensively documented, making it possible for us along with Fauna's community to bring support for FQL 

to more host languages over time.


Fig 1. Fauna deployments across US and European Region Groups.
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Overall, Fauna deployments are optimized for both external latencies and internal latencies. External 

latencies are reduced by allowing requests to quickly be routed from edge servers directly to the highly 

efficient, internal node network into which Fauna is deployed. Internal latencies are optimized by several 

factors, including distributing writes in transaction log batches which retain all ACID guarantees. Read 

requests can be served regardless of whether other zones or regions are available. Write requests require 

communication between a majority of zones or regions in the deployment to succeed, which can be scaled 

with added regions in a region group.



Public regions and region groups are multi-tenant, which means that many customers store and access 

data on shared hardware, with multiple layers of protections in place to ensure that tenants cannot access 

data that belongs to another tenant. Current public region groups span geographic areas that typically 

conform to local compliance regulations and data residency requirements.
 

Private Fauna deployments can be created within a single cloud provider region or a region group. They 

are single-tenant, providing VM-level isolation to data for a specific customer, allowing the customer to 

specify the regional footprint and set of cloud providers where they want their data to reside. To give a 

sense of scale, a single tenant has successfully leveraged a private Fauna region group spanning five 

regions and consisting of more than 50 hosts to field over 30k requests per second to power their 

customer metadata store – numbers that are relatively large but far below the theoretical scaling limits of a 

single deployment.

Environments



Fauna is a managed service; all resources associated with production regions or region groups run in 

Fauna-managed cloud provider accounts. Resources in both public and private deployments are modeled 

using an Infrastructure as Code (IaC) service that offers providers for AWS, GCP, and Azure. This means 

infrastructure for new regions or region groups can be provisioned with a simple source code change. 

Cloud provider-specific dependencies are limited to compute, blob storage, and VPC/routing resources, 

which means that Fauna can be deployed into additional environments in the future, such as Cloudflare and 

Fastly Points of Presence (PoPs).



Core database services are deployed to IaC-provisioned Virtual Machines (VMs) in each cloud environment. 

Each region or region group is homed in its own cloud provider account, minimizing the impact of an issue in 

any specific account. Ancillary containerized services are deployed to environment-specific clusters using 

an off-the-shelf container orchestration service.



The heart of Fauna is a Distributed Transaction Engine based on the Calvin transaction protocol. Calvin is a 

transaction scheduling and data replication layer that uses a deterministic ordering guarantee to significantly 

reduce contention costs associated with distributed transactions. Fauna uses Calvin to guarantee that every

Distributed Transaction Engine (DTE) Architecture
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DTE Logical Layers



Fauna’s architecture separates core database services into logical layers

 Routin

 Query Coordinatio

 Transaction Loggin

 Data Storage



Within each zone in a regional deployment or region in a region group deployment, routing, query 

coordinator, transaction log, and data storage nodes understand the full topology of the deployment and 

can forward requests to nodes in other availability zones or regions if a local node is not responding.


replica sees the same log of transactions and guarantees not only a final state equivalent to executing the 

transactions in this log one-by-one, but also a final state equivalent to every other replica.


Fig. 2. Fauna’s core architectural service layers.
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Transactions in the system start with a request sent by the client, which is handled by one or more logical 

layers in sequential order.

Routing


Fauna’s managed service includes a sophisticated routing layer that handles requests at ingress and 

optimally routes them to the correct region. The first step in routing relies on a highly available DNS service 

offered by a public cloud provider, with latency-based forwarding to routing nodes in the nearest zone or 

region.



When a customer wants to read or write data

 The customer sends an HTTP request to the IP address associated with one of the local routing nodes in 

DNS. At ingress, the request is handled by an open-source ingress controller that runs the request 

through a series of plug-ins that can block a request based on properties such as the IP address it is 

coming from. Plug-ins also have access to information about recent traffic patterns and can throttle 

requests in the event of a large request burst from an IP address or if read, write, or compute operations 

for a specific database or key exceed provisioned capacity or defensive rate limits

 After passing through plug-ins, requests are routed using a service mesh. Requests to the database are 

handled by a component of the service mesh that keeps a mapping between database keys and the 

region or region group where the associated database lives. Suppose the component has yet to see the 

key associated with the request before. In that case, it sends a multicast message to compute 

coordinators in each region or region group looking for a successful response

 When a successful response is received, the service caches the location of the database for the given 

key. It forwards the request to a query coordinator in the closest region in the appropriate region or 

region group.



This machinery allows customers to send all database requests to a single API endpoint regardless of where 

their data resides without updating endpoint configuration or sacrificing performance – a much simpler 

model than other managed databases currently offer.




Query Coordination


The Calvin transaction protocol removes the need for per-transaction locks by leveraging a pre-computation 

step that computes the inputs and effects of each transaction ahead of time. Fauna handles this pre-

computation on stateless query coordinators that scale horizontally.  

When a query coordinator receives a request

 The coordinator selects a snapshot time for the request based on either the time specified in the request 

or the current time if a time was not specified

 The coordinator inspects the transaction associated with the request and optimistically executes the 
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transaction without committing writes, communicating with data storage nodes to fetch the values for 

any necessary reads at the transaction time. The output of the execution is a flattened set of reads 

made as part of the transaction and a set of writes to be committed if there is no contention. The reads 

must be checked for contention.

 If the flattened transaction contains no writes, the coordinator returns the read results to the client

 If the flattened transaction contains writes, the coordinator passes the transaction to a transaction log 

node to be sequenced and committed. If the transaction log or data storage nodes are unavailable in 

the local zone or region, the coordinator communicates with the appropriate nodes in other zones or 

regions.

Transaction Log


The transaction log is the only system layer where cross-replica coordination is necessary. The log functions 

as a global write-ahead log, split into multiple segments that span replicas. The number of segments can be 

increased to scale log throughput. Each segment runs an optimized version of the Raft consensus algorithm 

to elect a leader for the segment. A leader for each log segment is elected from all healthy nodes, and non-

leader nodes forward transactions to the nearest leader. A new leader election is triggered if the current 

leader becomes unavailable.



When a transaction log node receives a flattened transaction

 The node passes the transaction to the log leader in its segment. The segment leader periodically 

assembles received transactions into batches to commit based on a configurable interval called the 

epoch interval

 The leader communicates with other leaders in the Raft ring to agree on the full set of transactions in the 

epoch.



After the batch has been replicated using Raft, its transactions are considered optimistically committed, 

although their write effects have not yet been applied. When all log segments have committed their 

respective batch transactions for a given epoch, the epoch's transactions are available for downstream 

processing by data storage nodes.



It should be noted that real-time global clock synchronization in Fauna is not required to guarantee 

correctness. Log nodes, which are the only ones generating epochs, are the only ones where clock 

synchronization occurs, and epochs are thus generated at about the same time. Based on epoch other, a 

timestamp is applied to every transaction that reflects its real commit time, within milliseconds of real-time, 

and its logical, strictly serializable order with respect to other transactions.



Based on epoch order, the system can assign a timestamp to each transaction, which both reflects its real 

commit time, within milliseconds of real-time, and its logical, strictly serializable order with respect to other 

transactions. For example, a developer might determine that the last transaction that wrote to document A 
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logically happened before the last update to document B based on the fact that the update time of A is the 

lesser of the two times.

Data Storage


Data storage nodes in each replica are assigned ranges of keys for which they are responsible, with the full 

key space represented. All data is stored in each zone or region, and every document is redundantly stored 

on at least three nodes.



For each new transaction

 Each storage node maintains a persistent connection to each local log node on which it listens for newly 

committed transactions for the ranges of keys it covers

 The storage node validates that none of the values read during transaction execution have changed 

between the execution snapshot time and the final transaction commit time, communicating with its 

peers if needed to get the state of values it does not cover

 If there is no conflict among the read values, the storage node updates the values it covers and informs 

the query coordinator of the transaction's success. If there is a conflict, the storage node drops the 

transaction's writes and informs the coordinator of the failure. The set of checks on the transaction read 

set at the transaction timestamp is deterministic, so all storage nodes either apply or fail every 

transaction in the log

 Upon receiving the transaction commit result from at least one storage node, the coordinator notifies the 

client of the result.



Written documents in applied transactions are not overwritten. Instead, a new document version at the 

current transaction timestamp is inserted into the document history, either as a create, update, or delete 

event. Retention policies for versions are configurable for each database.



Other optimizations, such as local index structures, are kept in memory to minimize the need to seek 

through each level file to determine if a data item is present. Files on disk are sorted string tables, which are 

compressed using the LZ4 algorithm to reduce disk and I/O usage. This also improves the performance of 

the file system cache. Because files are immutable, compression only occurs once per level file, which 

minimizes the performance impact.



Files are stored in logical levels, and a leveled compaction strategy ensures that files are compacted when 

the number of levels exceeds a fixed size. Compaction performs an incremental merge-sort of the contents 

of a level file batch and emits a new combined file. In the process, expired and deleted data is evicted, 

shrinking on-disk storage usage and ensuring high-performance reads.



Fauna’s storage system supports temporal queries, which means that all transactions can be executed 

consistently at any point in the past. This is useful for auditing, rollback, cache coherency, and 

synchronization to other systems, and forms a fundamental part of the Fauna isolation model. Privileged
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actors can manipulate historical versions directly to fix data inconsistencies, scrub personally identifiable 

information, insert data into the future, or perform other maintenance tasks.



The storage system also facilitates event streaming, which allows customers to subscribe to notifications 

when a document or a collection is updated. Streaming requires that customers keep a connection to 

Fauna open and allows them to take action in the client as their data changes.


Task Scheduler


Background tasks such as index builds are a frequent source of availability problems in legacy database 

systems. To mitigate this, Fauna background work is managed internally by a journaled, topology-aware task 

scheduler, similar to Hadoop YARN.



The Fauna task system implementation is general-purpose and can be extended to orchestrate new types 

of tasks that may need to operate on data nodes. Tasks can be limited to a database, zone, or region, or can 

be assigned a specific data range. The execution state of each task is persisted in a consistent metadata 

store, meaning that scheduled tasks can run node-agnostic if a node fails. Failed node tasks are 

automatically reassigned to other valid nodes and restarted or resumed.



Ancillary Services


Fauna deployments include additional services that run at the regional, region group, environment, or global 

level. For example, the Fauna dashboard is a React web application that operates at the environment level. 

It is deployed to Vercel and lets customers visually interact with their accounts and data. Separate 

containerized services at the region or region group level are used for user authentication/authorization, 

metrics and billing data aggregation, database backup/restore capabilities, and other functionality.


Scalability


The Fauna compute coordination layer is stateless, so nodes can be scaled both vertically and horizontally 

at any time. In the future, compute nodes will leverage reactive autoscaling or run on serverless compute 

fabrics.


The transaction log layer is split into segments, and throughput can be increased by increasing the number 

of log segments. However, coordination across segments is still required because each data storage node 

must receive a batch from each log segment before it can start to apply transactions in the epoch. The 

theoretical upper bound of log throughput is higher than any real-world transactional workload today.


Fauna is designed to be horizontally and vertically scalable, self-coordinating, and without a single point of 

failure. Any query coordinator in any region can receive any request, and coordinator nodes can 

communicate with log and data nodes in any other region.

System Properties

12

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html


Finally, the logical data layout in the data storage layer is partitioned across all nodes within the replica. 

Documents, including their history, are partitioned by primary key, while indexes are partitioned by lookup 

term.



Both documents and indexes scale linearly for reads and writes, regardless of their cardinality or the 

number of nodes in the deployment. This makes it possible for nodes to be scaled vertically or horizontally 

at any time. Hotspots in indexes are possible if the read or write velocity of a specific index entry exceeds 

the median size by a substantial margin. In this case, the index can be configured to partition individual 

terms across multiple ranges and perform a partial scatter-gather query-on-read, similar to a search system.


Availability


While no distributed system can guarantee total consistency and total availability at the same time, Fauna 

seeks to provide the optimal tradeoff between the two. Fauna is technically a CP system according to the 

criteria put forth in the CAP Theorem, guaranteeing consistency across the system at the cost of availability 

in the event of a network partition. But in today’s world, network partitions are rare enough in practice that 

the system can provide many 9s of availability.



Fauna is resilient to many types of faults that affect availability in other systems. In particular, Fauna is not 

vulnerable to a single point of failure, including at the zone or region level. For example, Fauna can tolerate 

temporary or permanent node unavailability, increased node latency, or a network partition that isolates a 

zone or region.



Durability


The Fauna local storage engine is implemented as a compressed log-structured merge (LSM) tree, similar to 

the primary storage engine in Bigtable. LSM storage engines are well-suited to both magnetic drives and 

SSDs.



Transactions are committed in batches to the global transaction log. Replicas tail the log and apply relevant 

write effects atomically in bulk. This model maintains a very high throughput with log-structured merge trees 

and avoids the need to accumulate and sort incoming write effects in a memory table. Atomicity is 

maintained, and data is preserved, notwithstanding the loss of nodes and even entire replicas. Because the 

Fauna temporal data model is composed of immutable versions, there are no problematic synchronous 

overwrites.

Performance


Fauna was designed to handle the performance requirements of demanding, highly responsive applications. 

This is achieved by replicating data within or across regions to bring it closer to the end user and by 

optimally routing requests from ingress to the data. Requests are routed to the closest zone or region where 

the data lives by default, even in the case of complete zonal or regional failure. Read requests can be 

served out of the closest zone or region, which often shaves tens or even hundreds of milliseconds of round 

trip latency off of a request, particularly in applications built using the client-serverless architectural 
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paradigm. Write requests must be replicated to a majority of log leaders in the log segment before a 

response can be sent. In practice, Fauna’s public region groups typically exhibit single-digit millisecond 

latency for reads and double-digit millisecond latency for basic writes in addition to the cost of the round 

trip to get to the regions in the region group.

While Fauna hasn’t published benchmark results, public region groups typically handle hundreds of 

thousands of requests per minute and burst to millions of requests per minute on current hardware. The 

query coordinator layer can be scaled rapidly to handle orders of magnitude more traffic based on demand. 

Public region groups also store many TB of data and storage nodes can be scaled to massively increase 

storage.


Consistency


Unlike most distributed databases, Fauna provides strict serializability, widely recognized as the ideal 

consistency model. Strict serializability is easy for developers to reason about, minimizes application 

complexity, and reduces the total amount of data that needs to be stored through normalization. The Fauna 

consistency model is designed to deliver strict serializability across multi-key transactions in a globally-

distributed cluster without compromising scalability, throughput, or read latency.



All read-write transactions are strictly serializable based on their position in a global transaction log because 

the order reflects the real-time processing order. Read-only transactions are serializable with an additional 

consistent-prefix Read Your Own Writes (RYOW) guarantee, which is facilitated by the driver maintaining a 

high watermark of the most recent logical transaction time observed from any prior transaction. This most 

recent transaction time is passed to the service with subsequent requests, which acts as a minimum bound 

on the snapshot time used for the read.


Security


Fauna was designed to handle the performance requirements of demanding, highly responsive applications. 

Fauna provides several tools for customers to secure their data. Developers can restrict data access based 

on the user's identity or the combination of identity and accessed data attributes. Keys used for access 

always close over a specific logical database scope and cannot access parent databases in the recursive 

hierarchy, although they can optionally access child databases.



Identity


Fauna users and their customers can be identified with either built-in password authentication or by using a 

trusted service that delegates authentication to a third-party identity provider, such as Okta or Auth0. On 

identity confirmation, the actor receives a token, which can be used to perform additional requests that 

close over their identity and access context, similar to an access token in OAuth2. This permits untrusted 

mobile, web, or other fat clients to interact directly with the database and participate in the row-level access 

control system. Actors are identified by keys that can have various privilege levels configured via Role-

Based Access Control (RBAC).
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Attribute-based access control (ABAC)


Fauna extends RBAC to allow privileges to be dynamically determined based on any attribute of the actor 

attempting to access or modify data, any attribute of the data to be accessed or modified, or contextual 

information available during a transaction. Access rules can be delegated to a predicate function written in 

FQL, which supports arbitrarily complex logic.


Native Multi-Tenancy


Each Fauna database acts as a permission boundary, so calls with a key mapped to a database cannot 

access data or perform actions outside that database. This model can be used to secure customer data in 

modern client-serverless architectures in ways that other databases cannot. For example, developers can 

create per-customer databases with unique keys that can be passed to authenticated users and stored on 

end devices for subsequent database calls. This eliminates concerns about customers crossing tenant 

boundaries and accessing other customers’ data.



Auditing and logging


All administrative and application transactions can be optionally logged. Additionally, the underlying 

temporal model document versions preserve the previous contents of all records within the configured 

retention periods. Although Fauna does not natively track data provenance, applications can tag every 

transaction with actor information and access that data historically as part of the document versions.
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In this paper, we’ve provided an overview of Fauna, a distributed document-relational database delivered as 

an API to meet the requirements of modern application developers. Our work building and operating Fauna is 

based on state-of-the-art research and industry progress in databases and operating systems, in addition to a 

wealth of hands-on operational experience. The database itself has been battle tested – tens of thousands of 

customers have created hundreds of thousands of databases, stored hundreds of terabytes of data, and sent 

billions of requests to the service in production.

Conclusion
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