SIEMENS

Gerätehandbuch

SIMATIC

ET 200SP

Analogeingabemodul Al Energy Meter 400VAC ST (6ES7134-6PA01-0BD0)

Ausgabe

10/2017

support.industry.siemens.com

SIEMENS

SIMATIC

ET 200SP Analogeingabemodul Al Energy Meter 400VAC ST (6ES7134-6PA01-0BD0)

Gerätehandbuch

Vorwort	
Wegweiser Dokumentation	1
Produktübersicht	2
Anschließen	3
Projektieren/Adressraum	4
Schnelleinstieg	5
Messwerte auslesen und verarbeiten	6
Energiezähler	7
Parameter	8
Alarme/Diagnosemeldungen	9
Technische Daten	10
Parameterdatensätze	Α
Messgrößen	В
<u>Modulvarianten</u>	С
Nutzdatenvarianten	D
Messwertdatensätze	Ε
Tipps und Tricks	F

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

MGEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

∕NWARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

⚠VORSICHT

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung qualifiziertem Personal gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

. WARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Vorwort

Zweck der Dokumentation

Das vorliegende Gerätehandbuch ergänzt das Systemhandbuch Dezentrales Peripheriesystem ET 200SP

(http://support.automation.siemens.com/WW/view/de/58649293). Funktionen, die das System generell betreffen, sind dort beschrieben.

Die Informationen des vorliegenden Gerätehandbuchs und der System-/Funktionshandbücher ermöglichen es Ihnen, das System in Betrieb zu nehmen.

Änderungen gegenüber der Vorgängerversion

Gegenüber der Vorgängerversion enthält das vorliegende Handbuch folgende Änderungen/Ergänzungen:

- Nuzdatenvariante: Basisgrößen Phasenbezogenen Messung (ID 159 oder 9F_H) ergänzt
- Anmerkungen zu der Vorgängerversion dieses Handbuchs sind in der aktuellen Ausgabe berücksichtigt.

Konventionen

CPU: Wenn im Folgenden von "CPU" gesprochen wird, dann gilt diese Bezeichnung sowohl für Zentralbaugruppen des Automatisierungssystems S7-1500, als auch für CPUs/Interfacemodule des Dezentralen Peripheriesystems ET 200SP.

STEP 7: Zur Bezeichnung der Projektier- und Programmiersoftware verwenden wir in der vorliegenden Dokumentation "STEP 7" als Synonym für alle Versionen von "STEP 7 (TIA Portal)".

Beachten Sie auch die folgendermaßen gekennzeichneten Hinweise:

Hinweis

Ein Hinweis enthält wichtige Informationen zum in der Dokumentation beschriebenen Produkt, zur Handhabung des Produkts oder zu dem Teil der Dokumentation, auf den besonders aufmerksam gemacht werden soll.

Security-Hinweise

Siemens bietet Produkte und Lösungen mit Industrial Security-Funktionen an, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen.

Um Anlagen, Systeme, Maschinen und Netzwerke gegen Cyber-Bedrohungen zu sichern, ist es erforderlich, ein ganzheitliches Industrial Security-Konzept zu implementieren (und kontinuierlich aufrechtzuerhalten), das dem aktuellen Stand der Technik entspricht. Die Produkte und Lösungen von Siemens formen nur einen Bestandteil eines solchen Konzepts.

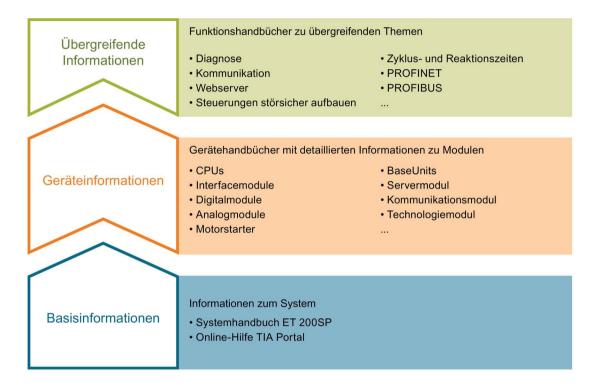
Der Kunde ist dafür verantwortlich, unbefugten Zugriff auf seine Anlagen, Systeme, Maschinen und Netzwerke zu verhindern. Systeme, Maschinen und Komponenten sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn und soweit dies notwendig ist und entsprechende Schutzmaßnahmen (z.B. Nutzung von Firewalls und Netzwerksegmentierung) ergriffen wurden.

Zusätzlich sollten die Empfehlungen von Siemens zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Industrial Security finden Sie unter (http://www.siemens.com/industrialsecurity).

Die Produkte und Lösungen von Siemens werden ständig weiterentwickelt, um sie noch sicherer zu machen. Siemens empfiehlt ausdrücklich, Aktualisierungen durchzuführen, sobald die entsprechenden Updates zur Verfügung stehen und immer nur die aktuellen Produktversionen zu verwenden. Die Verwendung veralteter oder nicht mehr unterstützter Versionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Produkt-Updates informiert zu sein, abonnieren Sie den Siemens Industrial Security RSS Feed unter (http://www.siemens.com/industrialsecurity).

Inhaltsverzeichnis


Vorwort.		4
Wegweis	ser Dokumentation	8
Produktü	ibersicht	12
2.1	Einsatzgebiet	12
2.2	Eigenschaften des Al Energy Meter 400VAC ST	14
Anschlie	ßen	16
3.1	Anschluss- und Prinzipschaltbild	16
3.2	·	
3.3	Daten zur Auswahl eines Stromwandlers	20
-		
4.2.1	Nutzdatenvariante im laufenden Betrieb umschalten	25
4.2.2	Empfehlungen zur Wahl der Modulvariante	26
4.3	Einsetzbare Module	27
Schnelle	instieg	28
Messwei	rte auslesen und verarbeiten	30
6.1	Grundlagen zum Lesen von Messwerten	30
6.2	Qualitätsinformationen	32
6.3	Messwerte zyklisch aus Nutzdaten lesen	34
6.4	Messwerte aus einem Messwertdatensatz lesen	36
Energiez	zähler	37
7.1	Funktionsweise des Energiezählers	37
7.2	Parametrierung von Zählern	39
7.3	-	
7.4	Energiezähler zurücksetzen	42
7.4.1	Einleitung	42
	•	
7.5.1	Aufbau der Steuer- und Rückmeldeschnittstelle für DS 143	
	Wegweis Produkti 2.1 2.2 Anschlie 3.1 3.2 3.3 Projektie 4.1 4.2 4.2.1 4.2.2 4.3 Schnelle Messwei 6.1 6.2 6.3 6.4 Energiez 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.5 7.5.1	2.2 Eigenschaften des Al Energy Meter 400VAC ST Anschließen

8	Paramete	r	53
	8.1	Parameter	53
	8.2	Erklärung der Parameter	56
9	Alarme/Di	iagnosemeldungen	60
	9.1	Status- und Fehleranzeige	60
	9.2 9.2.1	Alarme Diagnosealarm	
	9.3	Diagnosemeldungen	63
	9.4	Diagnoseverhalten	64
10	Technisch	ne Daten	66
	10.1	Technische Daten	66
Α	Paramete	rdatensätze	72
	A.1	Parametrierung über Parameterdatensätze	72
	A.2	Aufbau des Parameterdatensatzes 128 für das Gesamtmodul	73
В	Messgröß	Sen	80
С	Modulvari	ianten	85
	C.1	Modulvariante "2 I / 2 Q"	85
	C.2	Modulvariante "32 I / 12 Q"	88
D	Nutzdater	nvarianten	92
	D.1	Nutzdatenvarianten mit 32 byte Eingangs-/12 byte Ausgangsdaten	92
E	Messwert	datensätze	102
	E.1	Übersicht aller Messwertdatensätze	102
	E.2	Messwertdatensatz für Basismesswerte (DS 142)	103
	E.3	Aufbau für Energiezähler (DS 143)	105
F	Tipps und	l Tricks	107
	F.1	Tipps und Tricks	107

Wegweiser Dokumentation

Die Dokumentation für das Dezentrale Peripheriesystem SIMATIC ET 200SP gliedert sich in drei Bereiche.

Die Aufteilung bietet Ihnen die Möglichkeit gezielt auf die gewünschten Inhalte zuzugreifen.

Basisinformationen

Das Systemhandbuch beschreibt ausführlich die Projektierung, Montage, Verdrahtung und Inbetriebnahme des Dezentralen Peripheriesystems SIMATIC ET 200SP. Die Online-Hilfe von STEP 7 unterstützt Sie bei der Projektierung und Programmierung.

Geräteinformationen

Gerätehandbücher enthalten eine kompakte Beschreibung der modulspezifischen Informationen wie Eigenschaften, Anschlussbilder, Kennlinien, Technische Daten.

Übergreifende Informationen

In den Funktionshandbüchern finden Sie ausführliche Beschreibungen zu übergreifenden Themen rund um das Dezentrale Peripheriesystem SIMATIC ET 200SP, z. B. Diagnose, Kommunikation, Webserver, Motion Control und OPC UA.

Die Dokumentation finden Sie zum kostenlosen Download im Internet (http://w3.siemens.com/mcms/industrial-automation-systems-simatic/de/handbuchuebersicht/tech-dok-et200/Seiten/Default.aspx).

Änderungen und Ergänzungen zu den Handbüchern werden in einer Produktinformation dokumentiert.

Die Produktinformation finden Sie zum kostenlosen Download im Internet (https://support.industry.siemens.com/cs/de/de/view/73021864).

Manual Collection ET 200SP

Die Manual Collection beinhaltet die vollständige Dokumentation zum Dezentralen Peripheriesystem SIMATIC ET 200SP zusammengefasst in einer Datei.

Sie finden die Manual Collection im Internet (http://support.automation.siemens.com/WW/view/de/84133942).

"mySupport"

Mit "mySupport", Ihrem persönlichen Arbeitsbereich, machen Sie das Beste aus Ihrem Industry Online Support.

In "mySupport" können Sie Filter, Favoriten und Tags ablegen, CAx-Daten anfordern und sich im Bereich Dokumentation Ihre persönliche Bibliothek zusammenstellen. Des Weiteren sind in Support-Anfragen Ihre Daten bereits vorausgefüllt und Sie können sich jederzeit einen Überblick über Ihre laufenden Anfragen verschaffen.

Um die volle Funktionalität von "mySupport" zu nutzen, müssen Sie sich einmalig registrieren.

Sie finden "mySupport" im Internet (https://support.industry.siemens.com/My/ww/de/).

"mySupport" - Dokumentation

In "mySupport" haben Sie im Bereich Dokumentation die Möglichkeit ganze Handbücher oder nur Teile daraus zu Ihrem eigenen Handbuch zu kombinieren. Sie können das Handbuch als PDF-Datei oder in einem nachbearbeitbaren Format exportieren.

Sie finden "mySupport" - Dokumentation im Internet (http://support.industry.siemens.com/My/ww/de/documentation).

"mySupport" - CAx-Daten

In "mySupport" haben Sie im Bereich CAx-Daten die Möglichkeit auf aktuelle Produktdaten für Ihr CAx- oder CAe-System zuzugreifen.

Mit wenigen Klicks konfigurieren Sie Ihr eigenes Download-Paket.

Sie können dabei wählen:

- Produktbilder, 2D-Maßbilder, 3D-Modelle, Geräteschaltpläne, EPLAN-Makrodateien
- Handbücher, Kennlinien, Bedienungsanleitungen, Zertifikate
- Produktstammdaten

Sie finden "mySupport" - CAx-Daten im Internet (http://support.industry.siemens.com/my/ww/de/CAxOnline).

Anwendungsbeispiele

Die Anwendungsbeispiele unterstützen Sie mit verschiedenen Tools und Beispielen bei der Lösung Ihrer Automatisierungsaufgaben. Dabei werden Lösungen im Zusammenspiel mehrerer Komponenten im System dargestellt - losgelöst von der Fokussierung auf einzelne Produkte.

Sie finden die Anwendungsbeispiele im Internet (https://support.industry.siemens.com/sc/ww/de/sc/2054).

TIA Selection Tool

Mit dem TIA Selection Tool können Sie Geräte für Totally Integrated Automation (TIA) auswählen, konfigurieren und bestellen.

Es ist der Nachfolger des SIMATIC Selection Tools und fasst die bereits bekannten Konfiguratoren für die Automatisierungstechnik in einem Werkzeug zusammen. Mit dem TIA Selection Tool erzeugen Sie aus Ihrer Produktauswahl oder Produktkonfiguration eine vollständige Bestellliste.

Sie finden das TIA Selection Tool im Internet (http://w3.siemens.com/mcms/topics/de/simatic/tia-selection-tool).

SIMATIC Automation Tool

Mit dem SIMATIC Automation Tool können Sie unabhängig vom TIA Portal gleichzeitig an verschiedenen SIMATIC S7-Stationen Inbetriebsetzungs- und Servicetätigkeiten als Massenoperation ausführen.

Das SIMATIC Automation Tool bietet eine Vielzahl von Funktionen:

- Scannen eines PROFINET/Ethernet Anlagennetzes und Identifikation aller verbundenen CPUs
- Adresszuweisung (IP, Subnetz, Gateway) und Stationsname (PROFINET Device) zu einer CPU
- Übertragung des Datums und der auf UTC-Zeit umgerechneten PG/PC-Zeit auf die Baugruppe
- Programm-Download auf CPU
- Betriebsartenumstellung RUN/STOP
- CPU-Lokalisierung mittels LED-Blinken
- Auslesen von CPU-Fehlerinformation
- Lesen des CPU Diagnosepuffers
- Rücksetzen auf Werkseinstellungen
- Firmwareaktualisierung der CPU und angeschlossener Module

Sie finden das SIMATIC Automation Tool im Internet (https://support.industry.siemens.com/cs/ww/de/view/98161300).

PRONETA

Mit SIEMENS PRONETA (PROFINET Netzwerk-Analyse) analysieren Sie im Rahmen der Inbetriebnahme das Anlagennetz. PRONETA verfügt über zwei Kernfunktionen:

- Die Topologie-Übersicht scannt selbsttätig das PROFINET und alle angeschlossenen Komponenten.
- Der IO-Check ist ein schneller Test der Verdrahtung und des Modulausbaus einer Anlage.

Sie finden SIEMENS PRONETA im Internet (https://support.industry.siemens.com/cs/ww/de/view/67460624).

Produktübersicht 2

2.1 Einsatzgebiet

Einleitung

Energieeffizienz spielt in der Industrie eine immer größere Rolle. Steigende Energiepreise, wachsender Renditedruck und das zunehmende Bewusstsein für Klimaschutz sind wesentliche Faktoren für die Senkung von Energiekosten und für die Einführung eines Energiemanagementsystems.

Wofür setzen Sie das Al Energy Meter 400VAC ST ein?

Das AI Energy Meter 400VAC ST ist für den maschinennahen Einsatz in einem Dezentralen Peripheriesystem ET 200SP konzipiert. Das AI Energy Meter 400VAC ST erfasst über 200 verschiedene elektrische Mess- und Energiewerte. So schaffen Sie bereits im maschinennahen Bereich Transparenz über den Energiebedarf einzelner Komponenten einer Produktionsanlage.

Anhand der vom Al Energy Meter 400VAC ST gelieferten Messwerte können Sie Energieverbrauch und Leistungsaufnahme bestimmen. Aus den Messwerten können Sie Verbrauchsprognosen und die Effizienz bestimmen. Messdaten der Leistungsaufnahme sind für das Lastmanagement und Instandhaltung relevant. Außerdem können Sie die Messdaten für das Emissionsreporting und für die Ermittlung des CO₂ Fußabdrucks verwenden.

Hinweis

Messen gefährlicher elektrischer Größen

Das AI Energy Meter 400VAC ST ist nicht geprüft nach DIN EN 61010-2-030 und darf deshalb nicht zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen nach DIN EN 61557 eingesetzt werden.

Qualifiziertes Personal muss durch zusätzliche Maßnahmen sicher stellen, dass bei unkorrekter Anzeige keine Gefährdung für Mensch und Umwelt besteht.

TN- und TT-Netz

Der Einsatz des Al Energy Meter 400VAC ST ist in TN- und TT-Netzen möglich.

Messen mit Al Energy Meter 400VAC ST

Ein typisches Versorgungsnetz einer Produktionsanlage ist üblicherweise in drei Spannungsbereiche aufgeteilt:

- die Einspeisung der Gesamtanlage
- die Unterverteilung z.B. an den einzelnen Linien innerhalb der Anlage
- die Endverbraucher, beispielsweise in den Maschinen der Linien.

Die folgende Abbildung zeigt die Messung in einem Versorgungsnetz:

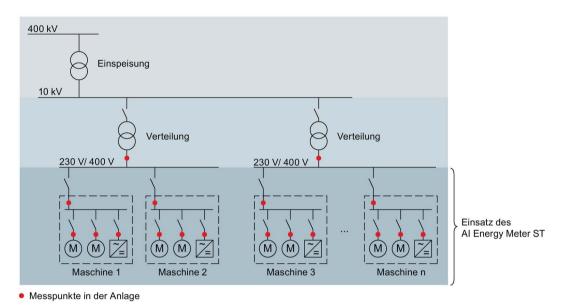
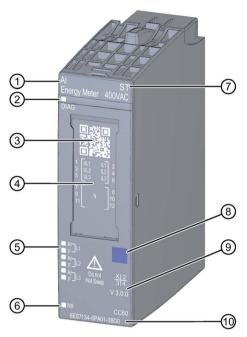


Bild 2-1 Einsatz des Al Energy Meter 400VAC ST

Vorteile des Al Energy Meter 400VAC ST

Das Al Energy Meter 400VAC ST hat folgende Vorteile:


- platzsparend vor allem für den Einsatz im Schaltschrank
- PROFINET IO oder PROFIBUS DP (abhängig vom verwendeten Interfacemodul)
- mehrere Module an einem Interfacemodul einsetzbar
- Erweiterung bereits vorhandener Stationen um Komponente zur Energieerfassung

2.2 Eigenschaften des Al Energy Meter 400VAC ST

Artikelnummer

6ES7134-6PA01-0BD0

Ansicht des Moduls

- ① Modultyp und bezeichnung
- 6 LED für Versorgungsspannung
- 2 LED für Diagnose
- ⑦ Funktionsklasse
- 3 2D-Matrix Code
- 8 Farbkennzeichnung Modultyp
- 4 Anschlussplan
- 9 Funktions- und Firmwarestand
- ⑤ LEDs für Kanalstatus
- ① Artikelnummer

Bild 2-2 Ansicht des Moduls Al Energy Meter 400VAC ST

Eigenschaften

Das Modul hat folgende technische Eigenschaften:

- Messung elektrischer Messgrößen aus ein- und dreiphasigen Versorgungsnetzen
- Max. Nennspannung zwischen zwei Außenleitern AC 400 V
- Erfassung von:
 - Spannungen
 - Strömen
 - Phasenwinkeln
 - Leistungen
 - Energie / elektrische Arbeit
 - Frequenzen
 - Leistungsfaktoren

Das Modul unterstützt folgende Funktionen:

Tabelle 2- 1 Versionsabhängigkeiten der Funktionen

	HW-Stand	FW-Stand	STEP 7		GSD-Datei	
Funktion			TIA Portal	V5.x	PROFINET IO	PROFIBUS DP
Firmware-Update	FS01	ab V3.0.0	ab V13 SP1 mit Update 4 und HSP	ab V5.5 SP4 und Hotfix 7	X	
Identifikationsdaten I&M0 bis I&M3	FS01	ab V3.0.0	ab V13 SP1 mit Update 4 und HSP	ab V5.5 SP4 und Hotfix 7	Х	X
Umparamametrieren im RUN	FS01	ab V3.0.0	ab V13 SP1 mit Update 4 und HSP	ab V5.5 SP4 und Hotfix 7	Х	Х
Diagnosealarme	FS01	ab V3.0.0	ab V13 SP1 mit Update 4 und HSP	ab V5.5 SP4 und Hotfix 7	Х	Х

Zubehör

Folgendes Zubehör ist separat zu bestellen:

- BaseUnit Typ D0
- Beschriftungsstreifen
- Referenzkennzeichnungsschild

Weitere Informationen zum Zubehör finden Sie im Systemhandbuch Dezentrales Peripheriesystem ET 200SP

(http://support.automation.siemens.com/WW/view/de/58649293).

Anschließen 3

3.1 Anschluss- und Prinzipschaltbild

Das AI Energy Meter 400VAC ST bildet in einer ET 200SP-Station zusammen mit seiner dunklen BaseUnit eine eigene Potenzialgruppe.

Allgemeine Sicherheitshinweise

Lebensgefahr durch elektrischen Schlag

Das Berühren spannungsführender Teile kann Tod oder schwere Körperverletzung zur Folge haben.

Schalten Sie vor Beginn der Arbeiten die Anlage und das Energy Meter spannungsfrei und schließen Sie installierte Wandler kurz.

. WARNUNG

Lebensgefahr, gefährliche Anlagenzustände und Sachschaden möglich

Das Ziehen und Stecken des Energy Meters unter Spannung ist verboten. Aus diesem Grund ist auf dem Energy Meter das Symbol "Do not Hot Swap" angebracht.

Wenn Sie das Energy Meter im laufenden Betrieb unter Spannung Ziehen und Stecken, dann können durch die verwendeten Wandler gefährliche Induktionsspannungen und Lichtbögen entstehen und gefährliche Anlagenzustände auftreten.

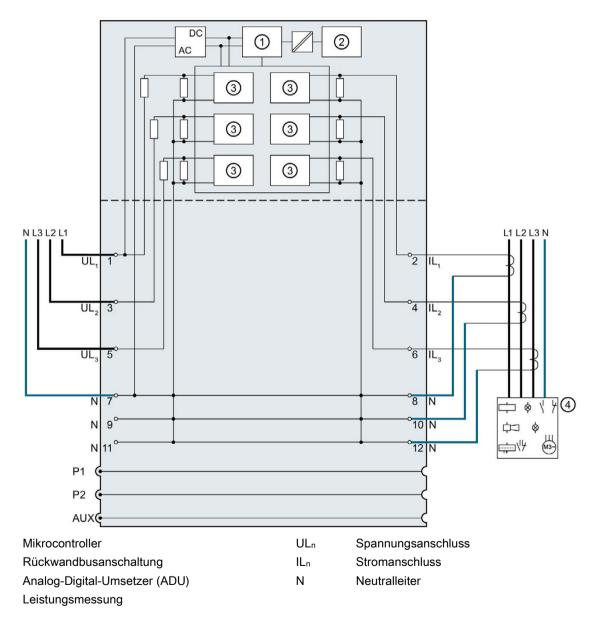
Das Energy Meter darf im laufenden Betrieb nur gezogen und gesteckt werden, wenn die an der BaseUnit zugeführten Messspannungen an den Klemmen U_{L1}, U_{L2}, U_{L3} allpolig abgeschaltet sind **und** spezielle Stromwandlerklemmen verwendet werden, die beim Ziehen den Wandler sekundärseitig kurzschließen.

Einsatz nur in Dreh- und Wechselstromnetzen

Bei Betrieb mit Gleichspannung/Gleichstrom wird das Energy Meter zerstört.

Verwenden Sie das Energy Meter ausschließlich zur Messung elektrischer Größen in Drehund Wechselstromnetzen.

Versorgung des Moduls


Das Energy Meter erhält seine Versorgung über die Klemmen U_{L1} und N. Die erforderliche Mindestspannung beträgt 85 V AC.

Absicherung der Anschlussleitungen

Zur Absicherung der Anschlussleitungen an U_{L1} , U_{L2} und U_{L3} achten Sie besonders nach Querschnittsübergängen auf ausreichenden Leitungsschutz.

Bei konstruktiv sichergestellter Kurzschlussfestigkeit nach IEC 61439-1:2009 kann ein separater Leitungsschutz für das AI Energy Meter 400VAC ST entfallen.

Anschluss- und Prinzipschaltbild

1

2

3

4

3.1 Anschluss- und Prinzipschaltbild

Einsetzbares BaseUnit

Im Handbuch Dezentrales Peripheriesystem ET 200SP ist beschrieben, dass eine Potenzialgruppe immer mit einem hellen BaseUnit beginnt. Das

Al Energy Meter 400VAC ST macht hier eine Ausnahme und wird nur mit dunklen BaseUnits vom Typ D0,

6ES7193-6BP00-0BD0 verwendet.

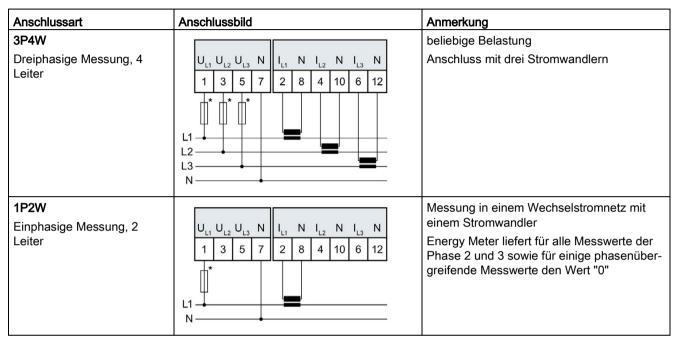
Die BaseUnit hat keinen Kontakt zum Powerbus und reicht das Potenzial des Powerbuses vom linken zum rechten Steckplatz nur durch.

Beachten Sie, dass bei Einsatz einiger älterer CPUs/Interfacemodule der erste zulässige Platz für das AI Energy Meter 400VAC ST der Steckplatz 2 ist.

Anschlussarten

Das Al Energy Meter 400VAC ST unterstützt folgende Anschlussarten:

- 3P4W, 3 Phasen, 4 Leiter
- 1P2W, 1 Phase, 2 Leiter


Die Eingangsbeschaltung des Moduls muss einer der aufgeführten Anschlussarten entsprechen. Wählen Sie die für den Einsatzzweck geeignete Anschlussart.

Anschlussbeispiele finden Sie im Kapitel Anschlussbeispiele (Seite 19).

Daten zur Auswahl eines Stromwandlers finden Sie im Kapitel Daten zur Auswahl eines Stromwandlers (Seite 20).

3.2 Anschlussbeispiele

Die folgenden Bilder zeigen den Anschluss des Energy Meters für drei- und einphasige Messungen. Beachten Sie, dass das Energy Meter grundsätzlich über Stromwandler anzuschließen ist.

^{*} Bei konstruktiv sichergestellter Kurzschlussfestigkeit nach IEC 61439-1:2009 kann ein seperater Leitungsschutz für das Al Energy Meter 400VAC ST entfallen.

Regeln für den Anschluss der Stromwandler

Für den Anschluss von Stromwandlern fordert DIN VDE 0100-557 bzw. IEC 60364-5-55 folgende Punkte:

- Sekundärstromkreise von Stromwandlern dürfen nicht geerdet werden.
- In Sekundärstromkreisen von Stromwandlern dürfen unterbrechende Schutzeinrichtungen nicht verwendet werden.
- Die Isolierung der Sekundärleitungen von Wandlern muss für die höchste vorkommende Spannung aller aktiven Teilen ausgewählt werden, oder die Sekundärleitungen müssen so verlegt werden, dass ihre Isolierung keine aktiven Teile berühren kann, z. B. keine Berührung mit Sammelschienen.
- Für temporäre Messungen müssen Anschlussstellen vorgesehen werden.

3.3 Daten zur Auswahl eines Stromwandlers

Einleitung

Für die Strommessung ist grundsätzlich der Anschluss über Stromwandler erforderlich. Verwenden Sie Ringkernwandler mit einer Genauigkeitsklasse von 0,5, 1 oder 3.

Dimensionierung des Stromwandlers

Die korrekte Dimensionierung des Stromwandlers ist wichtig, damit Sie

- korrekte Ergebnisse bei den Messungen erzielen.
- die Stromwandler nicht überlasten oder beschädigen.

Auswahl Stromwandler

Verwenden Sie Stromwandler, deren Bürdenleistung 1,5 bis 2-mal größer ist als die Verlustleistung im Anschlusskreis (besteht aus Widerstand der Anschlussleitungen und Bürde des Energy Meters). Die 1,5-fache Verlustleistung ist erforderlich, damit der Wandler nicht überlastet wird. Die 2-fache Verlustleistung ist wichtig, damit die Strombegrenzung im Kurzschlussfall gewährleistet ist.

Maximale Länge der Anschlussleitung

Um den Stromwandler nicht zu überlasten oder zu beschädigen, darf die im Datenblatt des Stromwandlers angegebene Bürdenlast Z_n (in VA) nicht überschritten werden. Um eine Überschreitung zu verhindern, muss der gesamte Bürdenwiderstand (bestehend aus dem Widerstand der Anschlussleitung und dem Innenwiderstand des AI Energy Meter 400VAC ST (siehe nachfolgendes Bild) unter einem gewissen Widerstandswert (in Abhängigkeit von Z_n und I_{max}) liegen.

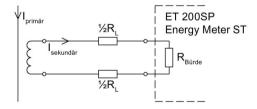


Bild 3-2 Maximale Länge der Anschlussleitung

Der maximale Wert für den Widerstand der Anschlussleitung ergibt sich aus der folgenden Formel:

$$R_{L, max} = \frac{Z_n}{I_{max}^2} - R_{B\ddot{u}rde}$$

 R_L Leitungswiderstand in Ohm I_{max} Sekundärstrom des Stromwandlers Z_n Bemessungsbürde Stromwandler in VA $R_{B\ddot{u}rde}$ Widerstand des Energy Meter (25 m Ω)

Bild 3-3 Maximaler Wert für den Widerstand der Anschlussleitung

Anhand des maximalen Leitungswiderstands in Ohm berechnen Sie dann die maximale Länge der Anschlussleitung. Beachten Sie dazu das Datenblatt der verwendeten Anschlussleitung.

Hinweis

Die Länge der Anschlussleitung (bestehend aus Hin- und Rückweg) darf den Wert von 200 Metern nicht überschreiten.

Beispiel

Stromwandler 500/5 A

Sie verwenden einen Stromwandler mit einem Übertragungsverhältnis von 500/5 A, der laut Datenblatt eine Bemessungsbürde Z_n von 5 VA hat.

Der maximale Primärstrom in der Applikation beträgt 400 A. Hieraus folgt, dass der maximale Sekundärstrom I_{max} 4 A beträgt. Die Bürde des AI Energy Meter inklusive Anschlusswiderstand beträgt $R_{B\ddot{u}rde}$ = 25 m Ω .

Der maximale Wert für den Widerstand der Anschlussleitung (Hin- und Rückleitung) ergibt sich aus der folgenden Formel:

$$R_{L, max} = \frac{Z_n}{I_{max}^2} - R_{B\bar{u}rde} = \frac{5 \text{ AV}}{16 \text{ A}^2} - 25 \text{ m}\Omega = 312,5 \text{ m}\Omega - 25 \text{ m}\Omega = 287,5 \text{ m}\Omega$$

Der maximale Leitungswiderstand zwischen Wandler und den Klemmen des Energy Meters darf in diesem Fall maximal 287,5 m Ω betragen. Die entsprechende Leitungslänge (Hin- und Rückleitung) ist abhängig vom verwendeten Querschnitt der Kupferleitung und kann aus der nachfolgenden Tabelle bestimmt werden.

Die folgende Tabelle zeigt für typische Querschnitte die Widerstandswerte von Kupferleitungen mit ρ = 0,017857 Ω x mm²/m

Länge für Anschlussleitung abschätzen

Der Wert aus der Tabelle muss kleiner sein als der berechnete Anschlusswiderstand R_{L max} der Leitung. Für den im o. a. Beispiel berechneten Widerstand R_{Lmax} von 287,5 m Ω ist der Einsatz einer Anschlussleitung (Hin- und Rückleitung) mit einer Länge von 10 m ab einem Querschnitt von 0,75 mm² möglich.

Querschnitt	AWG	Leitungsübersicht für Kupfer					
		0,5 m	1 m	5 m	10 m	50 m	
0,25 mm ²	24	35,7 mΩ	71,4 mΩ	357,1 mΩ	714,3 mΩ	3571,4 mΩ	
0,34 mm ²	22	26,3 mΩ	52,5 mΩ	262,6 mΩ	525,2 mΩ	2626,0 mΩ	
0,5 mm ²	21	17,9 mΩ	35,7 mΩ	178,6 mΩ	357,1 mΩ	1785,7 mΩ	
0,75 mm ²	19/20	11,9 mΩ	23,8 mΩ	119,0 mΩ	238,1 mΩ	1190,5 mΩ	
1,0 mm ²	18	8,9 mΩ	17,9 mΩ	89,3 mΩ	178,6 mΩ	892,9 mΩ	
1,5 mm ²	16	6,0 mΩ	11,9 mΩ	59,5 mΩ	119,0 mΩ	595,2 mΩ	
2,5 mm ²	14	3,6 mΩ	7,1 mΩ	35,7 mΩ	71,4 mΩ	357,1 mΩ	

3.3 Daten zur Auswahl eines Stromwandlers

Verhältnis von Bürdenlast und Verlustleistung prüfen

Damit der Wandler nicht überlastet wird und die Strombegrenzung im Kurzschlussfall gewährleistet ist, muss die Bemessungsbürde des Wandlers 1,5 bis 2 mal größer sein, als die Verlustleistung im Anschlusskreis.

Bei einem max. Sekundärstrom von 4 A berechnet die Verlustleistung im Anschlusskreis für eine Anschlussleitung (Hin- und Rückleitung) mit 10 m Länge und einem Querschnitt von 1,0 mm² und einem Bürdenwiderstand des Energy Meters von 25 m Ω nach folgender Formel:

$$\begin{aligned} &P_{Anschlusskreis} = (R_{Anschlussleitung} + R_{B\ddot{u}rde}) \times I^2_{max \, Sekund\ddot{a}r} \\ &P_{Anschlusskreis} = (178.6 \, m\Omega + 25 \, m\Omega) \times 4^2 \, A^2 = 3.26 \, W \end{aligned}$$

Das Verhältnis aus Bemessungsbürde und Verlustleistung im Anschlusskreis beträgt somit:

$$\frac{Z_{\text{N Bemessungsbürde}}}{P_{\text{Anschlusskreis}}} = \frac{5 \text{ VA}}{3,26 \text{ W}} = 1,54$$

Das geforderte Verhältnis von Bemessungsbürde und Verlustleistung im Anschlusskreis liegt im geforderten Bereich. Der Wandler ist ausreichend dimensioniert.

Siehe auch

Technische Daten (Seite 66)

Projektieren/Adressraum

4.1 Projektierung

Einleitung

Um das AI Energy Meter 400VAC ST nach dem Anschließen zu konfigurieren, verwenden Sie eine Projektierungssoftware wie STEP 7. Zusätzlich können Sie viele Parameter des AI Energy Meter 400VAC ST auch im RUN über das Anwenderprogramm anpassen.

Projektierung

Das Al Energy Meter 400VAC ST projektieren Sie mit:

- STEP 7 (TIA Portal) ab V13 SP1 mit Update 4 und HSP
- STEP 7 ab V5.5 SP4 und Hotfix 7
- GSD-Datei für PROFIBUS oder PROFINET

Hinweis

Konsistenzprüfung der Parametrierung nur mit STEP 7

Wenn Sie das AI Energy Meter 400VAC ST mit STEP 7 konfigurieren, überprüft STEP 7 die verschiedenen Parameter bereits während der Eingabe auf Konsistenz.

Wenn Sie das AI Energy Meter 400VAC ST mit GSD-Datei projektieren, findet keine Konsistenzprüfung statt. Fehlerhafte Eingaben erkennt das Modul erst nach dem Übertragen des Parameterdatensatzes. Erkennt das Modul einen ungültigen Parameter, verwirft das Modul den kompletten Datensatz.

Verwenden Sie zum Projektieren des AI Energy Meter 400VAC ST bevorzugt STEP 7.

Die folgende Anleitung zeigt das prinzipielle Vorgehen zur Projektierung des AI Energy Meter 400VAC ST mit STEP 7 (TIA Portal) ab V13 SP1 mit Update 4 und HSP.

- 1. Wählen Sie im Hardware-Katalog das von Ihnen verwendete Dezentrale Peripheriesystem ET 200SP aus.
- 2. Fügen Sie das Modul in Ihre Station ein .
- Öffnen Sie die Gerätesicht der ET 200SP und stecken Sie das Al Energy Meter 400VAC ST.
- 4. Parametrieren Sie das Al Energy Meter 400VAC ST entsprechend Ihren Anforderungen.

Nach dem fehlerfreien Übersetzen der Projektierung laden Sie die Projektierung in die CPU und nehmen Sie die ET 200SP-Station mit dem AI Energy Meter 400VAC ST in Betrieb.

4.2 Wahl der Modulyariante

Einleitung

Das Al Energy Meter 400VAC ST hat verschiedene Modulvarianten.

Bei der Projektierung legen Sie über die Wahl der Modulvariante fest, welche Messwerte gelesen werden können.

Jede Modulvariante liefert Qualitätsinformationen über die Eingangs-Nutzdaten.

Bei der Modulvariante "32 I / 12 Q" können Sie die Messwerte als Nutzdaten zyklisch aus dem Prozessabbild lesen. Bei jeder Modulvariante haben Sie die Möglichkeit, Messwertdatensätze mit der Anweisung RDREC asynchron vom

Al Energy Meter 400VAC ST zu lesen.

Einfluss der Modulvariante auf den Adressraum

Hinweis

Einfluss des Al Energy Meter 400 VAC ST auf den Maximalausbau des ET 200SP

Der zur Verfügung stehende Adressraum des ET 200SP wird durch folgende Faktoren beeinflusst:

- · CPU bzw. Interfacemodul
- · Gestecke Peripheriemodule

Der **zusätzlich** durch das AI Energy Meter 400 VAC ST allokierte Adressraum wird im Wesentlichen durch die Länge der gelieferten Nutzdaten beeinflusst. Die Modulvariante bestimmt die Länge der Nutzdaten, die maximal vom AI Energy Meter 400VAC ST geliefert werden.

Modulvarianten des AI Energy Meter 400VAC Projektierung mit STEP 7

Modulvari- ante	Nutzdaten	Adressraum	Bemerkung
21/2Q	Keine zyklischen Nutz- daten.	2 byte Eingänge / 2 byte Ausgänge	Informationen zum Aufbau der Modulvariante 2 I / 2 Q finden Sie im Anhang Modulvariante "2 I / 2 Q" (Seite 85).
	Zugriff auf Messwerte über "Datensatz lesen".		
32 I / 12 Q	Nutzdaten über definier- te Nutzdatenvarianten auswählbar	32 byte Eingänge / 12 byte Ausgänge	Die Nutzdatenvarianten können Sie im laufenden Betrieb umschalten.
			Informationen zum Aufbau der Modulvariante 32 I / 12 Q finden Sie im Anhang Modulvariante "32 I / 12 Q" (Seite 88).
			Informationen zu den Nutzdatenvarianten bei 32 I / 12 Q finden Sie im Anhang Nutzdatenvarianten mit 32 byte Eingangs-/12 byte Ausgangsdaten (Seite 92).

4.2.1 Nutzdatenvariante im laufenden Betrieb umschalten

Einleitung

Bei der Modulvariante 32 I / 12 Q schalten Sie die Nutzdatenvariante in den Ausgangsdaten in Byte 0 um.

Voraussetzung

- Anwenderprogramm ist erstellt.
- Al Energy Meter 400VAC ST ist als Modulvarianten 32 I / 12 Q konfiguriert.
- Anfangsadresse des Moduls im Prozessabbild der Ausgänge ist bekannt.

Vorgehen

- 1. Erstellen Sie pro Nutzdatenvariante eine Konstante mit dem Datentyp BYTE .
- 2. Geben Sie als Wert jeweils die Nutzdaten-ID ein.
- 3. Schreiben Sie die Konstante auf die Anfangsadresse des Moduls in das Prozessabbild der Ausgänge.

Ergebnis

Die Nutzdatenvariante wird mit dem nächsten Zyklus umgeschaltet.

Hinweis

Hinweise zur Nutzdatenumschaltung

In folgenden Fällen wird die parametrierte Nutzdatenvariante eingestellt:

- In den Ausgangsdaten einer Nutzdatenvariante wird im Byte 0 eine "0" geschrieben.
- In den Ausgangsdaten einer Nutzdatenvariante steht im Byte 0 ein ungültiger Wert:
 - Kodierung der Nutzdatenvariante nicht vorhanden

4.2.2 Empfehlungen zur Wahl der Modulvariante

Die folgende Tabelle zeigt, welche Modulvariante sich für welchen Einsatzbereich eignet.

Modulvariante	Anmerkungen zum Einsatzbereich
21/2Q	Ausschließlich azyklisches Lesen der Messwerte über die Anweisung RDREC aus Messwertdatensätzen.
	Einsatz vieler Module möglich, weil wenig Adressraum belegt wird.
32 I / 12 Q	Zyklisches Lesen der Messwerte aus den Nutzdaten.
	 Durch Umschaltung der Nutzdatenvariante können Sie verschiedene Mess- größen lesen.
	 Pro Nutzdatenumschaltung vergeht ein Zyklus. Messwerte aus der nächsten Nutzdatenvariante werden mit einem leichten zeitlichen Versatz geliefert.
	 Abhängig von der Nutzdatenvariante müssen Sie Messwerte in der CPU über den mitgelieferten Skalierungsfaktor in physikalische Werte umrechnen.
	Azyklisches Lesen der Messwerte über die Anweisung RDREC aus Messwert- datensätzen.
	Einsatz weniger Module möglich, weil jedes Modul 32 byte Eingänge und 12 byte Ausgänge belegt.

4.3 Einsetzbare Module

Die folgende Tabelle zeigt, mit welchen Controllern die unterschiedlichen Modulvarianten projektierbar sind.

	Modulvariante		
Controller	2 I / 2Q	32 I / 12 Q	
IM 155-6 PN ST	ab \	/1.0	
IM 155-6 PN HF	ab \	/2.0	
IM 155-6 PN BA	ab \	/3.2	
IM 155-6 PN HS	ab V4.0		
IM 155-6 DP HF	ab V1.0		
CPU 1510SP-1 PN	ab \	/1.6	
CPU 1510SP F-1 PN	ab \	/1.7	
CPU 1512SP-1 PN	ab \	/1.6	
CPU 1512SP F-1 PN	ab V1.7		
CPU 1515SP PC	ab \	/1.7	

Schnelleinstieg 5

Einleitung

Dieses Kapitel zeigt, wie Sie auf besonders schnelle und einfache Art und Weise Ihre ersten Messwerte über das Energy Meter 400 VAC ST auslesen und anzeigen.

Voraussetzung

Sie haben das Energy Meter bereits in einer der im Kapitel Anschließen (Seite 16) gezeigten Anschlussarten an Ihr Netz angeschlossen. In Ihrem Projektierwerkzeug (z. B. STEP 7) ist das Energy Meter 400 VAC ST bereits integriert oder Sie haben die GSD/GSDML-Datei für das Energy Meter 400 VAC ST in Ihren Hardware Katalog ihres Projektierwerkzeugs schon eingebunden.

Vorgehensweise

1. Projektieren einer ET 200SP-Station

Projektieren Sie eine Station ET 200SP mit einer CPU 151xSP oder einer IM 155-6.

2. Modul in ET 200SP-Station stecken

Stecken Sie das Energy Meter 400 VAC ST in die ET 200SP-Station und verwenden Sie die Modulvariante mit 32 Byte Eingängen und 12 Byte Ausgängen.

3. Modulparameter einstellen

Stellen Sie für das Energy Meter 400 VAC ST die folgenden Parameter ein:

- Anschlussart, in der Sie das Energy Meter 400 VAC ST angeschlossen haben (z. B. 3P4W)
- Messbereich, damit ist die Strangspannung (UL1-N) Ihres Netzes gemeint (z. B. 230 VAC)
- Frequenz Ihres Netzes (z. B. 50 Hz)
- Primar- und Sekundärstrom des eingesetzten Stromwandlers (z. B. 100 A und 1 A)

Lassen Sie alle anderen Parameter auf den voreingestellten Werten und ändern Sie diese nicht.

4. Projektierung laden

Schalten Sie die ET 200SP-Station ein und laden Sie die Projektierung in die CPU.

Ergebnis

Nach dem Einschalten liefert das Energy Meter die Messwerte für die Nutzdatenvariante "Gesamtleistung L1L2L3 mit der ID 254 bzw. FE_H.

Lesen und überprüfen Sie die Messwerte, die das Energy Meter in den Ausgangsdaten bereitstellt.

Die folgende Tabelle zeigt, den Aufbau der Nutzdatenvariante, die Messgrößen und den Datentyp der Messwerte in STEP 7 (TIA Portal), die in den 32 Byte Ausgangsdaten des Moduls gespeichert sind. Jede Messgröße wird über eine Messwert-ID referenziert. Eine Übersicht aller Messgrößen mit ihren Messwert-IDs finden Sie im Kapitel Messgrößen (Seite 80)

Tabelle 5-1 Gesamtleistung L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	254 (FE _н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Strom L2	UINT	1 mA	0 65535	66008
6 7	Strom L3	UINT	1 mA	0 65535	66009
8 9	Gesamt-Wirkleistung L1L2L3	INT	1 W	-27648 27648	66035
10 11	Gesamt-Blindleistung L1L2L3	INT	1 var	-27648 27648	66036
12 13	Gesamt-Scheinleistung L1L2L3	INT	1 VA	-27648 27648	66034
14 17	Gesamt-Wirkenergie L1L2L3	DINT	1 Wh	-2147483647 +2147483647	225
18 21	Gesamt-Blindenergie L1L2L3	DINT	1 varh	-2147483647 +2147483647	226
22	reserviert	BYTE	-	0	-
23	Gesamt-Leistungsfaktor L1L2L3	USINT	0,01	0 100	66037
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Strom L2	USINT	-	0 255	-
26	Skalierung Strom L3	USINT	-	0 255	-
27	Skalierung Gesamt-Wirkleistung L1L2L3	USINT	-	0 255	-
28	Skalierung Gesamt-Blindleistung L1L2L3	USINT	-	0 255	-
29	Skalierung Gesamt-Scheinleistung L1L2L3	USINT	-	0 255	-
30	Skalierung Gesamt-Wirkenergie L1L2L3	USINT	-	0 255	-
31	Skalierung Gesamt-Blindenergie L1L2L3	USINT	-	0 255	-

Weitere Informationen

Wenn Sie weitere Informationen zur Auswertung und Interpretation der Messwerte benötigen, dann lesen Sie im Kapitel Messwerte auslesen und verarbeiten (Seite 30) weiter.

Messwerte auslesen und verarbeiten

6

6.1 Grundlagen zum Lesen von Messwerten

Einleitung

Das AI Energy Meter 400VAC ST stellt die gemessenen Messwerte und -größen über folgende Verfahren bereit:

Zyklisch: Nutzdaten

Azyklisch: Messwertdatensätze

Nutzdaten

Nutzdaten liefern vordefinierte Messwerte abhängig von der parametrierten Nutzdatenvariante. Die gelieferten Messwerte werden zyklisch in das Prozessabbild der CPU geschrieben. Bei einigen Nutzdatenvarianten werden die Messwerte als Rohdaten geliefert, die Sie über einen mitgelieferten Skalierungsfaktor in die entsprechenden physikalischen Werte umrechnen müssen.

Messwertdatensätze

Jeder Messwertdatensatz liefert physikalische Werte, die Sie sofort weiterverarbeiten können. Die Werte aus einem Messwertdatensatz lesen Sie azyklisch mit der Anweisung RDREC in eine PLC-Variable vom Datentyp STRUCT. Für jeden zu lesenden Messwertdatensatz benötigten Sie jeweils eine entsprechende PLC-Variable.

Sie können die gelesenen Messwerte auch in STEP 7 in einer Beobachtungstabelle anzeigen. Adressieren Sie die Variable vom Datentyp STRUCT direkt.

Hinweis

Wenn Sie andere CPUs als S7-1200 oder S7-1500 einsetzen, konvertieren Sie 64-Bit-Messwerte in 32-Bit-Messwerte. Beachten Sie, dass es durch die Konvertierung zu Genauigkeitsverlusten kommen kann.

Lesen Sie hierzu den FAQ: 64-Bit-Gleitpunktzahlen in S7-300/400 verarbeiten (https://support.industry.siemens.com/cs/ww/de/view/56600676)

Gültigkeit der Messwerte

Nach dem Einschalten der Versorgungsspannung UL1 liegen nach ca. 2 Sekunden die ersten Messwerte vor. In den Eingangsnutzdaten nimmt der Inhalt von Byte 0 die gewählte Nutzdatenvariante an. Diese Änderung im Byte 0 können Sie als Trigger-Ereignis benutzen.

Sobald gültige Messwerte im Modul vorliegen, ändert sich der Wert dieses Bytes auf einen Wert innerhalb des Wertbereichs.

Erstanlauf des Modules

Nach dem Erst- oder Wiederanlauf des Moduls werden die Parameter auf das Modul übertragen. In den Parametern der Hardware Konfiguration kann eine Nutzdatenvariante voreingestellt werden. Diese ist so lange wirksam, bis in den Ausgangsdaten (Byte 0) eine andere Nutzdatenvariante gewählt wird. Damit lassen sich die Eingangsnutzdaten entsprechend der Prozessanforderungen dynamisch umstellen.

Unter folgenden Voraussetzungen wird die im Parameterdatensatz 128 definierte Nutzdatenvariante verwendet:

- In den Ausgangsdaten einer Nutzdatenvariante wird im Byte 0 eine "0" geschrieben.
- In den Ausgangsdaten einer Nutzdatenvariante steht im Byte 0 ein ungültiger Wert: Kodierung der Nutzdatenvariante nicht vorhanden

Strom-Messwerte werden "0"

Die Strom- und alle weiteren davon abhängigen Messwerte werden in folgenden Fällen in den Datensätzen und in den Nutzdaten unterdrückt (bzw. auf "0"gesetzt):

- Eingespeister Strom des Stromwandlers ist kleiner als der projektierte Parameter "Untergrenze Strommessung".
- Eingespeister Sekundärstrom am Kanal ist größer als 12 A

Folgende Messwerte und abgeleitete Messgrößen der betroffenen Phase werden zu "0":

- Effektivwert Strom
- Wirkleistung
- Blindleistung
- Scheinleistung
- Phasenwinkel
- Leistungsfaktor

Die Leistungswerte unterliegen einer gleitenden Mittelwertbildung. Diese werden nach entsprechender Zeit erst zu "0". Der Energiezähler für Wirk-, Blind- und Scheinenergie der zurückgesetzten Phase zählt nicht weiter.

Ersatzwertverhalten

Die Ersatzwerte für Eingangswerte des Al Energy Meter 400VAC ST betragen "0".

Siehe auch

Messwerte zyklisch aus Nutzdaten lesen (Seite 34)

Messwerte aus einem Messwertdatensatz lesen (Seite 36)

Wahl der Modulvariante (Seite 24)

6.2 Qualitätsinformationen

Einleitung

Das Al Energy Meter 400VAC ST liefert in einem Statuswort Qualitätsinformationen zur Messung. Mit Hilfe dieser Informationen können Sie den Status auswerten:

- Ströme (I_{L1}, I_{L2}, I_{L3}) und Spannungen (U₁, U₂, U₃) liegen im gültigen Messbereich
- Betriebsquadranten f
 ür Phase 1.

Die Qualitätssinformationen können Sie bei jeder Modulvariante im Byte 1 der Ausgangsnutzdaten auswerten.

Aufbau der Qualitätsinformationen

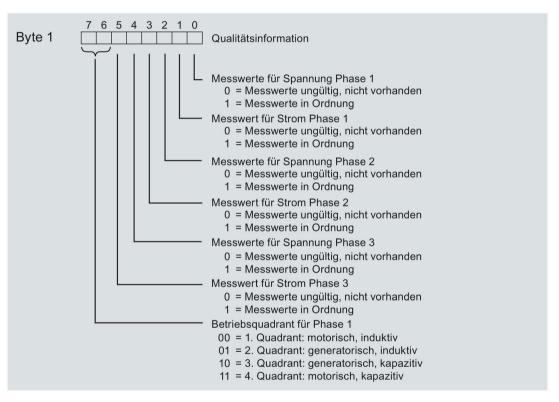


Bild 6-1 Qualitätsinformationen

Betriebsquadrant

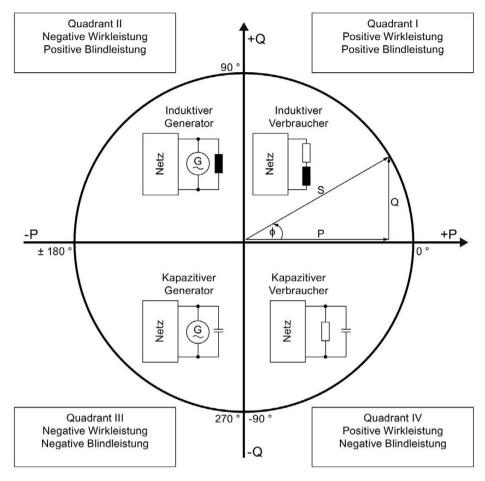


Bild 6-2 Quadrant in den Qualitätsbits

Siehe auch

Modulvariante "32 I / 12 Q" (Seite 88)

6.3 Messwerte zyklisch aus Nutzdaten lesen

Voraussetzung

- STEP 7 ist geöffnet.
- Al Energy Meter 400VAC ST ist konfiguriert.

Skalierung der Messwerte in den Nutzdaten

Da der Wertebereich von 16-Bit-Werten oft kleiner ist als der Wertebereich der physikalischen Größe, wird für die betroffenen Mess- oder Rechenwerte zusätzlich zum Grundwert ein Skalierungsfaktor in den Nutzdaten mitgeliefert. Den tatsächlichen Wert der Messgröße bestimmen Sie mit der folgenden Formel:

Tatsächlicher Wert der Messgröße = Messwert in den Nutzdaten x 10^{Skalierungsfaktor}

Vorgehen

Um Messwerte zyklisch aus den Nutzdaten zu lesen, gehen Sie folgendermaßen vor:

- 1. Lesen Sie den für Sie relevanten Messwert aus den Eingangsdaten aus.
- 2. Beachten Sie bei skalierten Messwerten den Skalierungsfaktor und rechnen Sie den gelesenen Messwert über den Skalierungsfaktor um.

Beispiel

Am Al Energy Meter 400VAC ST ist die Nutzdatenvariante 254 (FE_H)"Gesamtleistungen L1L2L3" konfiguriert. Der Messwert für "Strom L1" soll gelesen werden.

Tabelle 6-1 Gesamtleistung L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess-wert-ID
0	Nutzdatenvariante	BYTE	-	254 (FE _н)	-
1	Qualitätsinformation = $QQ_1 I_3 U_3 I_2 U_2 I_1$ U_1	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Strom L2	UINT	1 mA	0 65535	66008
6 7	Strom L3	UINT	1 mA	0 65535	66009
:	:	:	:	:	:
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Strom L2	USINT	-	0 255	-
26	Skalierung Strom L3	USINT	-	0 255	-
:	·	:	:	:	:
31	Skalierung Gesamt-Blindenergie L1L2L3	USINT	-	0 255	-

In der Nutzdatenvariante FE_H (254) wird der Messwert für den Strom L1 in Byte 2 + 3 gepeichert. Der Strom wird vom Modul als 16-Bit-Festpunktzahl im Wertebereich von 0 bis 65535 in der Einheit 1 mA geliefert. Außerdem ist noch der Skalierfaktor für den Strom L1 zu berücksichtigen. Den zugehörigen Skalierungsfaktor liefert das Modul im Byte 24 mit.

Der tatsächliche Wert für den Strom L1 berechnet sich wie folgt:

Tatsächlicher Wert für Strom L1 = Strom L1 x 10^{Skalierung Strom L1}

Siehe auch

Grundlagen zum Lesen von Messwerten (Seite 30)

6.4 Messwerte aus einem Messwertdatensatz lesen

Einleitung

Um Messwerte aus einem Messwertdatensatz zu lesen, verwenden Sie die Anweisung RDREC. Die gelesenen Werte werden in einer PLC-Variablen mit anwenderdefiniertem Datentyp (UDT) gespeichert.

Weiterführende Informationen finden Sie in der Dokumentation von STEP 7 unter dem Stichwort "RDREC".

Voraussetzung

- STEP 7 ist geöffnet.
- Al Energy Meter 400VAC ST ist konfiguriert.

Vorgehen

- 1. Erstellen Sie in STEP 7 eine PLC-Variable vom Datentyp STRUCT.
- 2. Fügen Sie die Anzahl von Strukturelementen ein, die der Anzahl der im Messwertdatensatz enthaltenen Einträge entspricht.
- 3. Fügen Sie im Anwenderprogramm die Anweisung RDREC ein.
- 4. Parametrieren Sie die Anweisung RDREC wie folgt:
 - ID: Hardware-Kennung oder Anfangsadresse des Energy Meters (abhängig von der eingesetzten CPU).
 - INDEX: Nummer des Messwertdatensatzes, dessen Einträge gelesen werden.
 - MLEN: Länge des Messwertdatensatzes in Bytes. "0", wenn alle Einträge gelesen werden sollen.
 - RECORD: Zielbereich für den gelesenen Datensatz. Länge ist abhängig von MLEN.
- 5. Rufen Sie die Anweisung RDREC mit REQ = 1 auf.

Ergebnis

Die Werte aus dem Messwertdatensatz wurden in den Zieldatenbereich übertragen.

Siehe auch

Grundlagen zum Lesen von Messwerten (Seite 30)

Energiezähler

7.1 Funktionsweise des Energiezählers

Einleitung

Das AI Energy Meter 400VAC ST stellt 42 Energiezähler zur Verfügung, die sowohl netz- als auch phasenbezogene Energiewerte erfassen.

- Wirkenergie (Summe, Abgabe, Bezug)
- Blindenergie (Summe, Abgabe, Bezug)
- Scheinenergie (Summe)

Prinzip der Energieerfassung

Auf Basis der gemessenen Ströme und Spannungen und des Rechenzykluses berechnet das Energy Meter die Wirk-, Blind- und Scheinenergien. Die Wirk-, Blind- und Scheinenergien werden in jedem Rechenzyklus aktualisiert.

Projektierung

Für die Energiezähler projektieren Sie folgende Einstellungen:

• Aktivierung der Torschaltung für den Energiezähler

Die Torschaltung ermöglicht Ihnen das Starten und Stoppen der Zähler über Ausgangsdaten (DQ-Bit). Wenn Sie die Torschaltung deaktivieren, beginnt die Zählung sofort nach dem Einschalten des Energy Meters.

Modi der Energiezähler

Die Energiezähler zählen unendlich.

Die Einstellungen gelten für die Energiezähler aller Phasen.

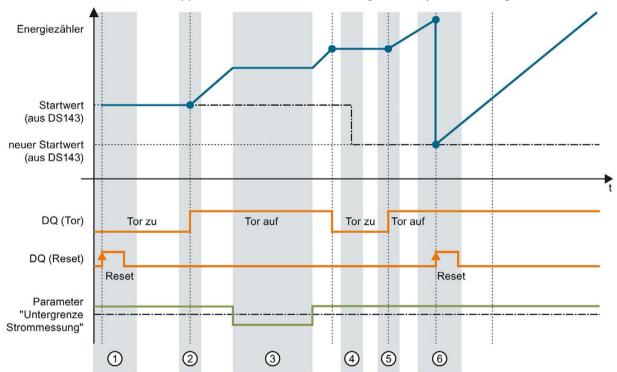
Eigenschaften im RUN ändern

Sie können im laufenden Betrieb folgende Eigenschaften der Energiezähler ändern:

- Energiezähler aktivieren / deaktivieren
- Energiezähler zurücksetzen
- Startwerte für Energiezähler setzen

7.1 Funktionsweise des Energiezählers

Automatisches Rücksetzen der Energiezähler


Die Energiezähler werden automatisch auf "0" zurückgesetzt, wenn eine Umparametrierung energiezählerrelevanter Parameter erfolgt. Bei phasengranularer Umparametrierung energiezählerrelevanter Parameter werden nur die Energiezähler der jeweiligen Phasen zurückgesetzt.

Das Umparametrieren folgender Parameter führt zu einer Rücksetzung der Energiezähler:

- Messart oder Messbereich
- Stromwandler (Primärstrom/Sekundärstrom)
- Stromrichtung

Beispiel

Die folgende Abbildung zeigt die Auswirkung der Parameter Startwert, Rücksetzen und Starten/Stoppen bei aktivierter Torschaltung am Beispiel des Energiezählers:

- ① Der Zähler wird auf den in der Konfiguration festgelegten Wert zurückgesetzt. Das Tor ist geschlossen. Der Zähler zählt nicht.
- (2) Das Tor wird über das Steuerbyte 1 in den Ausgangsdaten der Nutzdatenvariante geöffnet. Der Zähler zählt.
- 3 Die parametrierte Stromuntergrenze wird unterschritten. Der Zähler zählt nicht.
- Das Tor wird geschlossen. Der Zähler zählt nicht. Mit der Anweisung WRREC wird ein neuer Startwert in den Messwertdatensatz 143 geschrieben.
- Das Tor wird wieder über das Steuerbyte 1 in den Ausgangsdaten der Nutzdatenvariante geöffnet. Der Zähler zählt mit neuem Startwert.
- 6 Der Zähler wird über das Steuerbyte 1 in den Ausgangsdaten der Nutzdatenvariante zurückgesetzt. Der Zähler zählt ab dem neuen Startwert, der über den Messwertdatensatz 143 übergeben wurde.

Siehe auch

Energiezähler auswerten (Seite 41)

7.2 Parametrierung von Zählern

Übersicht

Die Energiezähler des Al Energy Meter 400VAC ST können Sie wie folgt parametrieren:

- Aktivieren / Deaktivieren
- Zähler über Torschaltung starten / stoppen
- Startwerte setzen und zurücksetzen

Torschaltung Energiezähler

Sie haben die Möglichkeit die Energiezähler über eine Torschaltung zu starten und zu stoppen. Hierzu müssen Sie:

- in der Konfiguration des Al Energy Meter 400VAC ST den Parameter "Torsteuerung für Energiezähler aktivieren" auswählen.
- in den Nutzdaten im Steuerbyte 1 der Ausgangsdaten das DQ-Bit für das "Zählertor" setzen (Bit 6 im Steuerbyte 1).

Der Parameter "Torschaltung für Energiezähler aktivieren" und das DQ-Bit für das "Zählertor" verhalten sich wie eine Parallelschaltung von Kontakten.

Torschaltung aktiviert: Tor "geöffnet", wenn DQ = "1"

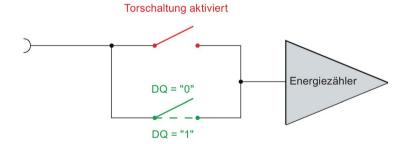


Bild 7-1 Torschaltung aktiviert

7.3 Energiezähler auswerten

Wenn Sie in der Konfiguration des AI Energy Meter 400VAC ST den Parameter "Torschaltung für Energiezähler aktivieren" abwählen, dann arbeiten die Energiezähler unabhängig vom DQ-Bit solange der Stromwert oberhalb der projektierten "Untergrenze Strommessung" liegt.

Torschaltung deaktiviert: Tor immer "geöffnet" (Signalweg geschlossen)

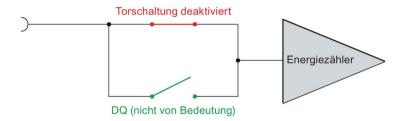


Bild 7-2 Torschaltung deaktiviert

Startwerte setzen und zurücksetzen

Über die Ausgangsdaten jeder Nutzdatenvariante können Sie die Zähler auf deren Startwerte zurücksetzen. Bei Energiezählern müssen Sie im Steuerbyte 2 des Datensatzes 143 das Bit des Energiezählers setzen, der zurückgesetzt wird.

Über den Datensatz 143 können Sie jeden Energiezähler auf den Startwert zurücksetzen oder auch einen neuen Startwert vorgeben. Den Zeitpunkt für die Aktualisierung der Startwerte definieren Sie im Datensatz 143 und im Steuerbyte 1 in den Nutzdaten. Startwerte werden entweder sofort oder erst nach Setzen eines Rücksetzbits von 0 auf 1 übernommen.

Eine ausführliche Beschreibung hierzu finden Sie im Kapitel Datensatz für Energiezähler (DS 143) (Seite 49).

7.3 Energiezähler auswerten

Energiezähler auswerten

Den Energiezähler werten Sie aus:

- über die Eingangsdaten der Nutzdatenvarianten für Energien
 - Nutzdatenvariante "Gesamtenergie L1 L2 L3" (ID 249 bzw. F9_H)
 - Nutzdatenvariante "Energie L1" (ID 248 bzw. F8H)
 - Nutzdatenvariante "Energie L2" (ID 247 bzw. F7H)
 - Nutzdatenvariante "Energie L3" (ID 246 bzw. F6н)
- über Lesen von Datensätzen
 - "Datensatz für Basismesswerte (DS 142)" zur Auswertung der Gesamtenergien L1 L2 L3
 - "Datensatz für Energiezähler (DS 143)" zur Auswertung der phasenbezogenen Energie

Messwerte auswerten

Das Auswerten von Messwerten über die Eingangsdaten der Nutzdatenvarianten sowie das Lesen von Datensätzen mit der Anweisung RDREC ist im Kapitel Messwerte auslesen und verarbeiten (Seite 30) beschrieben.

7.4 Energiezähler zurücksetzen

7.4.1 Einleitung

Einleitung

Zu Beginn eines neuen Arbeitsauftrages kann es sinnvoll sein, den Energiezähler des Energy Meters zurückzusetzen. Zurücksetzen bedeutet hierbei, dass die Energiezähler auf ihre Startwerte zurückgesetzt werden.

In den nachfolgenden Kapiteln ist beschrieben, wie Sie

- Energiezähler über die Ausgänge der Nutzdaten zurücksetzen.
- Energiezähler über den Datensatz 143 und zurücksetzen.

7.4.2 Energiezähler über Nutzdaten zurücksetzen

Einleitung

Wegen der unterschiedlichen Länge der Ausgangsdaten ist das Rücksetzen der Energiezähler abhängig von der projektierten Modulvariante.

Wenn Sie Modulvarianten mit 12 Byte Ausgangsdaten verwenden, dann können Sie.

- Energiezähler für alle Phasen getrennt nach Wirk-, Blind- und Scheinenergie zurücksetzen.
- Energiezähler für jede **einzelne** Phase getrennt nach Wirk-, Blind- und Scheinenergie zurücksetzen.

Wenn Sie die Modulvariante mit 2 Byte Ausgangsdaten verwenden, dann setzen Sie immer **sämtliche** Energiezähler auf einmal zurück.

Vorgehen bei Modulvariante mit 12 Byte Ausgangsdaten

Energiezähler für alle 3 Phasen zurücksetzen

- 1. Wählen Sie in Byte 2 die Kategorien der Energiezähler aus, die Sie zurücksetzen wollen.
 - Setzen Sie Bit 5 für die Zähler der Wirkenergien.
 - Setzen Sie Bit 6 für die Zähler der Blindenergien.
 - Setzen Sie Bit 7 für die Zähler der Scheinenergien.

Bild 7-3 Auswahl der Energiezähler

2. Setzen Sie in Byte 1 das Reset-Bit (Bit 7).

Bei einem Flankenwechsel des Reset-Bits für Energiezähler von 0 auf 1 setzt das Modul sämtliche Energiezähler zurück, die Sie zuvor in Byte 2 ausgewählt haben.

Bild 7-4 Reset-Bit für Energiezähler

Vorgehen bei Modulvariante mit 2 Byte Ausgangsdaten

Wenn Sie die Modulvariante mit 2 Byte Ausgangsdaten verwenden, dann setzen Sie immer sämtliche Energiezähler auf einmal zurück. Setzen Sie im Steuerbyte 1 das Reset-Bit (Bit 7) durch Flankenwechsel von 0 auf 1.

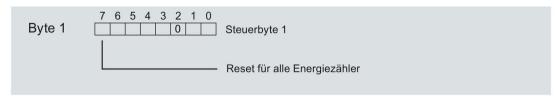


Bild 7-5 Rücksetzen der Energiezähler bei Modulvariante mit 2 Byte Ausgangsdaten

7.4 Energiezähler zurücksetzen

Startwerte

Nach dem Rücksetzen zählen die Energiezähler mit den festgelegten Startwerten (Default = 0). Sie können die Startwerte für die Energiezähler über Datensatz DS 143 ändern, siehe Kapitel Aufbau für Energiezähler (DS 143) (Seite 49).

Über den Datensatz 143 haben Sie die Möglichkeit die Zähler auch phasenbezogen nach Wirk-, Blind- und Scheinenergie zurückzusetzen.

7.4.3 Energiezähler über Datensatz DS 143 zurücksetzen

Einleitung

Bei allen Modulvarianten können Sie die Energiezähler über den Datensatz DS 143 zurücksetzen. Das Rücksetzen ist möglich für:

Energiezähler für jede einzelne Phase getrennt nach Wirk-, Blind- und Scheinenergie.

Vorgehen bei allen Modulvariante über Datensatz DS 143

- 1. Setzen Sie im Steuerbyte 1 des DS 143 das Reset-Bit (Bit 2) auf 1 und für die Überlaufzähler das Bit 0 auf 1.
- 2. Setzen Sie im Steuerbyte 2 des DS 143 über Bit 5 bis 7 die Kategorie der Energiezähler (Wirk-, Blind-, Scheinenergie) auf 1.
- Setzen Sie im Steuerbyte 1 des DS 143 das Bit 7 für den Zeitpunkt der Übernahme der Startwerte:
 - Bit 7 auf 0, wenn die Startwerte sofort nach der Übertragung des Datensatzes übernommen werden sollen
 - Bit 7 auf 1, wenn die Startwerte erst dann übernommen werden sollen, nach dem das Reset-Bit in den Ausgangsdaten der Nutzdaten gesetzt wird.

4. Übertragen Sie den Datensatz mit der Anweisung WRREC.

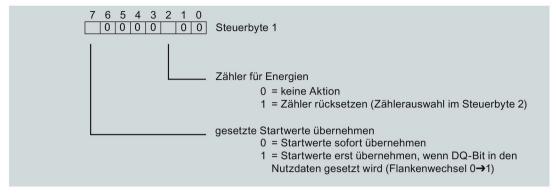


Bild 7-6 Energiezähler Steuerinformationen DS 143

Startwerte

Den Zeitpunkt für die Übernahme der Startwerte legen Sie im Steuerbyte 1 über Bit 7 fest. Nach dem Rücksetzen zählen die Energiezähler mit den festgelegten Startwerten (Default = 0). Sie können die Startwerte für die Energiezähler über Datensatz DS 143 ändern.

1 = Zähler für Scheinenergie rücksetzen

7.4.4 Beispiel für Energiezähler über Datensatz DS 143 zurücksetzen

Einleitung

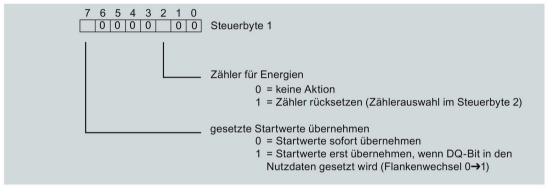
Bevor Sie den Datensatz DS 143 an die CPU übertragen können, müssen Sie in Ihrem Anwenderprogramm einen PLC-Datentyp anlegen, der identisch zum Datensatz DS 143 aufgebaut ist.

Vorgehen

Erstellen Sie einen PLC-Datentyp, der identisch zum Datensatz 143 aufgebaut ist.
 Genaue Informationen zum Aufbau des Datensatzes 143 können Sie dem Kapitel Aufbau für Energiezähler (DS 143) (Seite 49) entnehmen.

Byte	Messgröße	Datentyp	Einheit	Wertebereich	Messwert- ID
0	Version	BYTE	-	1	-
1	reserviert	BYTE	-	0	-
2	Steuerbyte 1 - L1	BYTE	Bitfolge	-	-
3	Steuerbyte 2 - L1	BYTE	Bitfolge		
4	Steuerbyte 1 - L2	BYTE	Bitfolge		
5	Steuerbyte 2 - L2	BYTE	Bitfolge		
6	Steuerbyte 1 - L3	BYTE	Bitfolge		
7	Steuerbyte 2 - L3	BYTE	Bitfolge		
815	Wirkenergie Bezug (Startwert) L1	LREAL	Wh	siehe Kapi-	61180
1623	Wirkenergie Abgabe (Startwert) L1	LREAL	Wh	telAufbau für Ener- giezähler (DS 143) (Seite 49)	61181
:	:	:	:	:	:

2. Erstellen Sie einen DB oder Instanz-DB und belegen Sie die Werte des Datensatzes.


Byte 0 und Byte 1:

Geben Sie im Byte 0 den Wert 01_H ein und im Byte 1 den Wert 00_H ein.

Byte 2 ... Byte 7: Steuerbytes für Energiezähler

Geben Sie in den Steuerbytes für die jeweiligen Phasen an, welche Energiezähler Sie rücksetzen wollen.

Die Steuerbytes geben für jede Phase (L1, L2, L3) einzeln vor, ob und welche Energiezählerwerte zurückgesetzt werden sollen.

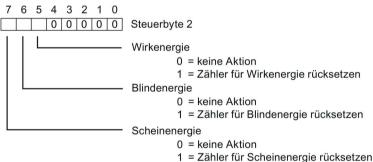


Bild 7-7 Steuerinformationen DS 143 für Energiezähler

7.4 Energiezähler zurücksetzen

Byte 8 ... Byte 127: Startwerte für die einzelnen Energiezähler

Die Startwerte für Energiezähler im Datensatz 143 sind 64-Bit-Gleitkommazahlen. Dies entspricht in der S7-1200 und in der S7-1500 dem Datentyp LREAL.

3. Schreiben Sie den Datensatz mithilfe der Anweisung "WRREC" in das Modul AI Energy Meter 400VAC ST.

Die Eingangsparameter müssen wie folgt belegt werden:

- REQ: Ein neuer Schreibauftrag wird angestoßen, wenn REQ = TRUE.
- ID: Hardware-Kennung oder Anfangsadresse des Energy Meters (abhängig von der eingesetzten CPU).
- INDEX: die Datensatznummer: 143
- LEN: die maximale Länge des Datensatzes: 128
- RECORD: ein Zeiger auf den Datenbereich in der CPU, der den Datensatz 143 enthält.

Hinweis

Wenn Sie mehrere Al Energy Meter 400VAC ST zur gleichen Zeit schreiben oder auslesen möchten, dann beachten Sie die maximale Anzahl der aktiven Aufträge der Kommunikation mit SFB52/SFB53.

7.5 Datensatz für Energiezähler (DS 143)

7.5.1 Aufbau für Energiezähler (DS 143)

Energiezähler-Datensatz 143 für verschiedene Aktionen

Der Energiezähler-Datensatz 143 beinhaltet alle auf der Baugruppe verfügbaren Energiezähler phasengranular. Der Datensatz kann für verschiedene Aktionen genutzt werden:

- Rücksetzen der Energiezähler auf anwenderspezifischen Wert (z.B. "0")
- Auslesen der aktuellen Werte der Energiezähler

Energiezähler-Datensatz 143

Tabelle 7-1 Energiezähler-Datensatz 143

Byte	Messgröße	Datentyp	Einheit	Wertebereich	Messwert-ID
0	Version	BYTE	-	1	-
1	reserviert	BYTE	-	0	-
2	Steuerbyte 1 - L1	BYTE	Bitfolge	-	-
3	Steuerbyte 2 - L1	BYTE	Bitfolge		
4	Steuerbyte 1 - L2	BYTE	Bitfolge		
5	Steuerbyte 2 - L2	BYTE	Bitfolge		
6	Steuerbyte 1 - L3	BYTE	Bitfolge		
7	Steuerbyte 2 - L3	BYTE	Bitfolge		
815	Wirkenergie Bezug (Startwert) L1	LREAL	Wh		61180
1623	Wirkenergie Abgabe (Startwert) L1	LREAL	Wh		61181
2431	Blindenergie Bezug (Startwert) L1	LREAL	varh		61182
3239	Blindenergie Abgabe (Startwert) L1	LREAL	varh		61183
4047	Scheinenergie (Startwert) L1	LREAL	VAh		61184
4855	Wirkenergie Bezug (Startwert) L2	LREAL	Wh		61200
5663	Wirkenergie Abgabe (Startwert) L2	LREAL	Wh		61201
6461	Blindenergie Bezug (Startwert) L2	LREAL	varh		61202
7279	Blindenergie Abgabe (Startwert) L2	LREAL	varh	Beim Lesen:	61203
8087	Scheinenergie (Startwert) L2	LREAL	VAh	0.01.8 x 10 ³⁰⁸	61204
8895	Wirkenergie Bezug (Startwert) L3	LREAL	Wh		61220
96103	Wirkenergie Abgabe (Startwert) L3	LREAL	Wh	Beim Schreiben:	61221
104111	Blindenergie Bezug (Startwert) L3	LREAL	varh	0.03.4 x 10 ¹²	61222
112119	Blindenergie Abgabe (Startwert) L3	LREAL	varh		61223
120127	Scheinenergie (Startwert) L3	LREAL	VAh		61224

Fehler bei Übertragung des Datensatzes

Das Modul überprüft immer sämtliche Werte des übertragenenen Datensatzes. Nur wenn sämtliche Werte ohne Fehler übertragen wurden, übernimmt das Modul die Werte aus dem Datensatz.

Die Anweisung WRREC für das Schreiben von Datensätzen liefert bei Fehlern im Parameter STATUS entsprechende Fehlercodes zurück.

Die folgende Tabelle zeigt die modulspezifischen Fehlercodes und deren Bedeutung für den Messwertdatensatz 143.

Fehler	Fehlercode im Parameter STATUS (hexadezimal)		STATUS	Bedeutung	Abhilfe	
Byte 0	Byte 1	Byte 2	Byte 3			
DF	80	В0	00	Nummer des Datensatzes unbekannt	Gültige Nummer für Datensatz eintragen.	
DF	80	B1	00	Länge des Datensatzes nicht korrekt	Zulässigen Wert für Datensatzlänge eintragen.	
DF	80	B2	00	Steckplatz ungültig oder nicht erreichbar.	Station überprüfen, ob Modul gesteckt oder gezogen ist.	
					Zugewiesene Werte für Parameter der Anweisung WRREC überprüfen.	
DF	80	E1	01	Reservierte Bits sind nicht 0.	Byte 27 prüfen und reservierte Bits wieder auf 0 setzen.	
DF	80	E1	39	Falsche Version eingetragen.	Byte 0 prüfen. Gültige Version eintragen.	
DF	80	E1	3A	Falsche Datensatzlänge eingetragen.	Parameter in der Anweisung WRREC prüfen. Gültige Länge eintragen.	
DF	80	E1	3C	Mindestens ein Startwert ist ungültig.	Byte 8103 und Byte 158169 prüfen. Startwerte dürfen nicht negativ sein.	
DF	80	E1	3D	Mindestens ein Startwert ist zu groß	Byte 8103 und Byte 158169 prüfen. Wertebereiche für Startwerte beachten.	

7.5.2 Aufbau der Steuer- und Rückmeldeschnittstelle für DS 143

Einleitung

Byte 2 bis 7 des Datensatzes 143 bilden die phasenbezogene Steuer- und Rückmeldeschnittstelle für den Messwertdatensatz des Energiezählers.

- Byte 2 und 3: Steuer- und Rückmeldeschnittstelle für Phase 1
- Byte 4 und 5: Steuer- und Rückmeldeschnittstelle für Phase 2
- Byte 6 und 7: Steuer- und Rückmeldeschnittstelle für Phase 3

Statusinformationen

Beim Lesen des Datensatzes 143 mit der Anweisung RDREC liefern die Bytes 2 bis 7 phasenbezogene Statusinformationen für Energiezähler.

Über die Statusinformationen können Sie erkennen, welche Zähler im Datensatz 143 ihre Werte zurückliefern. Wenn im Statusbyte 1 Zähler für Energiewerte ihre Werte zurückliefern, dann können Sie bei Statusbyte 2 den Typ des Energiezählers ermitteln.

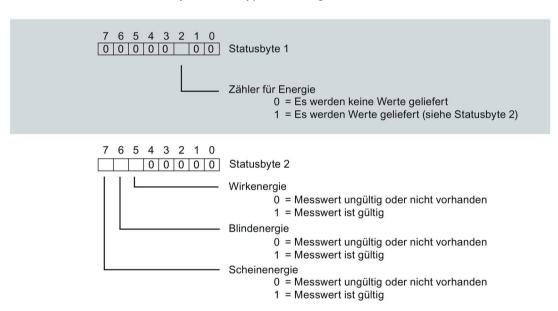
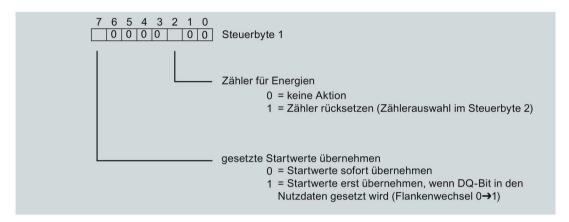



Bild 7-8 Statusinformationen DS 143 (lesender Zugriff)

Steuerinformationen

Beim Schreiben des Datensatzes 143 mit der Anweisung WRREC dienen die Bytes 2 bis 7 als phasenbezogene Steuerinformationen für Energiezähler. Die Länge der Steuerinformation beträgt für jede Phase 2 Byte:

- Im Steuerbyte 1 legen Sie fest, wie Sie den Z\u00e4hler r\u00fccksetzen und den Zeitpunkt, zu dem der Z\u00e4hler zur\u00fcckgesetzt wird.
- Im Steuerbyte 2 legen Sie fest, welchen Energiezähler Sie rücksetzen wollen.

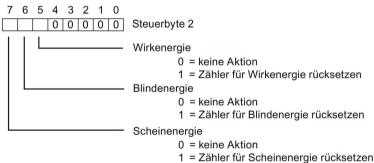


Bild 7-9 Steuerinformationen DS 143 (schreibender Zugriff)

Parameter

8.1 Parameter

Parameter des Al Energy Meter 400VAC ST (DS 128)

In der Regel ist das Al Energy Meter 400VAC ST bereits im Hardwarekatalog von STEP 7 (TIA Portal) oder STEP 7 ab V5.5. integriert. In diesem Fall überprüft STEP 7 (TIA Portal) bzw. STEP 7 ab V5.5 die parametrierten Eigenschaften während der Projektierung auf Plausibilität.

Sie können das Modul jedoch auch mit Hilfe einer GSD-Datei und der Projektiersoftware eines beliebigen Anbieters parametrieren. Die Gültigkeit der parametrierten Eigenschaften prüft das Modul immer erst nach dem Laden der Projektierung. Beachten Sie, dass einige Parameter von der gewählten Anschlussart des Energy Meters abhängig sind. So ist z. B. in der Anschlussart 1P2W für Messungen im 1-Phasen-Wechselstromnetz die Eingabe von Parametern für die Phasen 2 und 3 nicht sinnvoll und werden in diesem Fall vom System auch nicht überprüft.

Der Wirkungsbereich der über GSD-Datei einstellbaren Parameter ist abhängig vom verwendeteten Bussystem:

- Dezentraler Betrieb am PROFINET IO in einem ET 200SP-System
- Dezentraler Betrieb mit PROFIBUS DP in einem ET 200SP-System

Weiterhin können Sie parametrierte Eigenschaften über das Anwenderprogramm im RUN ändern. Bei der Parametrierung im Anwenderprogramm werden die Parameter mit der Anweisung "WRREC" über Datensätze an das Modul übertragen (siehe Anhang Parametrierung über Parameterdatensätze (Seite 72)). Eine Zusammenfassung aller einstellbaren Parameter finden Sie in der nachfolgenden Tabelle.

Tabelle 8- 1 Parameter AI Energy Meter 400VAC ST

Parameter	Wertebereich	Voreinstellung	Umpa- rame- trieren	Wirkungsbereich mit Projek- tiersoftware z. B. STEP 7 (TIA Portal)	
			im RUN	GSD-Datei PROFINET I O	GSD-Datei PROFIBUS D P
Diagnose Netzspannung	sperrenfreigeben	sperren	ja	Modul	Modul
Anschlussart	 deaktiviert 1P2W - 1-Phasen- Wechselstrom 3P4W - 3 Phasen, 4 Leiter 	3P4W - 3 Phasen, 4 Leiter	ja	Modul	Modul (nur 1P2W, 3P4W und deakti- viert)

8.1 Parameter

Parameter	Wertebereich	Voreinstellung	Umpa- rame- trieren	Wirkungsbereich mit Projek- tiersoftware z. B. STEP 7 (TIA Portal)	
			im RUN	GSD-Datei PROFINET I O	GSD-Datei PROFIBUS D P
Spannungsmessbereich	 100 V 110 V 115 V 120 V 127 V 190 V 200 V 208 V 220 V 230 V 	230 V	ja	Modul	Modul
Toleranz Netzspannung [%]	• 1 50 %	10 %	ja	Modul	Modul
Netzfrequenz	50 Hz60 Hz	50 Hz	ja	Modul	Modul
Torschaltung Energiezähler aktivieren	nein ja	nein	ja	Modul	-
Nutzdatenvariante	siehe Tabelle Übersicht der Nutzdatenvarianten (Seite 92)	Gesamtleistungen L1 L2 L3 (ID 254 bzw. FE _H)	ja	Modul	Modul (nur Nutz- datenvariante)
Diagnose Überlauf Strom	sperrenfreigeben	sperren	ja	Kanal/Phase	Modul
Diagnose Überlauf Spannung	sperrenfreigeben	sperren	ja	Kanal/Phase	Modul
Diagnose Unterlauf Spannung	sperrenfreigeben	sperren	ja	Kanal/Phase	Modul
Diagnose unterer Grenzwert Spannung	sperren freigeben	sperren	ja	Kanal/Phase	- (sperren ist voreingestellt)
Diagnose Überlauf Summenwerte	sperrenfreigeben	sperren	ja	Kanal/Phase	Modul
Überstrom Toleranzwert [0.1 A]	• 10 100 [0,1 A]	100 [0,1 A]	ja	Kanal/Phase	Modul
Überstrom Toleranzzeit [ms]	• 1 60000 ms	40000 ms	ja	Kanal/Phase	Modul
Untergrenze Strommessung [mA]	• 20 250 mA	50 mA	ja	Modul	- (Voreinstel- lung: 20 mA)

Parameter	Wertebereich	Voreinstellung	Umpa- rame- trieren	Wirkungsbereich mit Projek- tiersoftware z. B. STEP 7 (TIA Portal)	
			im RUN	GSD-Datei PROFINET I O	GSD-Datei PROFIBUS D P
Stromwandler Primärstrom [A]	• 1 10000 A	1 A	ja	Kanal/Phase	Modul (Wertebe- reich: 165535)
Stromwandler Sekundärstrom	• 1 A • 5 A	1 A	ja	Kanal/Phase	Modul
Stromrichtung umkehren	sperrenfreigeben	sperren	ja	Kanal/Phase	Modul

8.2 Erklärung der Parameter

Diagnose Netzspannung

Aktivieren Sie hier die Diagnose Netzspannung. Bei fehlender oder zu geringer Spannung an L1 wird die Meldung "Versorgungsspannung an L1 fehlt" ausgegeben und ein Diagnosealarm ausgelöst.

Anschlussart

Geben Sie hier an, welche Anschlussart Sie für das Energy Meter verwendet haben.

Weiterführende Informationen finden Sie unter "Anschlussbeispiele (Seite 19)".

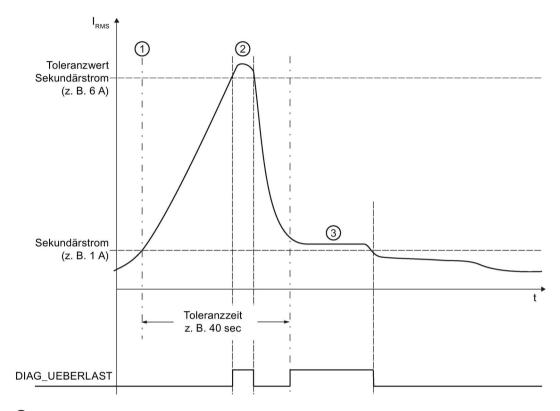
Spannungsmessbereich

Hier stellen Sie den Spannungsmessbereich des Stromversorgungssystems ein.

Toleranz Netzspannung

Überwachung der Netzspannung entsprechend dieses Toleranzbandes, gilt als Plus- oder Minuswert.

Netzfrequenz


Hier stellen Sie die Netzfrequenz des Stromversorgungssystems ein.

Torschaltung Energiezähler aktivieren

Aktivieren Sie hier die Torschaltung für den Energiezähler. Bei aktivierter Torschaltung zählt der Energiezähler nur, wenn das entsprechende Ausgangsdatenbit (DQ-Bit) auf "1" steht.

Diagnose Überlauf Strom

Der Messstrom wird nach Ablauf der "Toleranzzeit" auf "Überstrom [0.1 A] Toleranzwert " überwacht. Eine Überschreitung ergibt Überlauf Strom.

- ① Die Toleranzzeit startet, sobald der Sekundärstromwert (1 A, 5 A) überschritten wird.
- ② DIAG_UEBERLAST diagnostiziert die betroffene Phase, wenn innerhalb der parametrierten Toleranzzeit der Toleranzwert des Sekundärstroms überschritten worden ist (oder der Maximalwert des Sekundärstroms (12 A) überschritten wird).
- Nach Ablauf der Toleranzzeit wird der Sekundärstromwert (1 A, 5 A) überwacht. Eine Überschreitung des Sekundärstromwerts liefert ebenfalls DIAG_UEBERLAST.

Bild 8-1 Diagnoseverhalten bei Überlast des Stroms

Diagnose Überlauf Spannung

Netzspannung (Messbereich) wird auf Toleranz überwacht. Eine Verletzung des Überlaufs löst einen Diagnosealarm aus.

Diagnose Unterlauf Spannung

Netzspannung (Messbereich) wird auf Toleranz überwacht. Eine Verletzung des Unterlaufs löst einen Diagnosealarm aus.

8.2 Erklärung der Parameter

Diagnose unterer Grenzwert Spannung

Unterer Grenzwert für Spannung wird überwacht. Eine Unterschreitung löst einen Diagnosealarm aus.

Diagnose Überlauf Summenwerte

Ein Summenüberlauf in den Rechengrößen wird angezeigt. Die Werte bleiben am oberen oder unteren Maximum stehen. Eine Verletzung löst einen Diagnosealarm aus.

Überstrom Toleranzwert [0.1 A]

Der Parameter Toleranzwert Sekundär-Überstrom (10 ... 100) gibt den tolerierbaren Wert des Sekundärstroms in 0,1 A-Schritten an (10 = 1 A ... 100 = 10 A). Beachten Sie beim Einsatz des Stromwandlers dessen Stromklasse (1 A, 5 A).

Überstrom Toleranzzeit

Überwachungszeit in ms, in der der Überstrom toleriert wird. 0 bedeutet dabei, dass die Überwachungszeit deaktiviert ist.

Untergrenze Strommessung

Die parametrierbare Untergrenze Strommessung bezieht sich auf die Sekundärströme und dient dazu, Fehlberechnungen bei sehr kleinen Strömen zu vermeiden. Fehlerhafte Messungen bei sehr kleinen Strömen sind insbesondere eine Ursache von Ungenauigkeiten im eingesetzten Stromwandler. Parametrieren Sie die Untergrenze Strommessung in Abhängigkeit Ihres Prozesses auf den erforderlichen Wert.

Tipp: Sollten Sie die Untergrenze Strommessung experimentell ermitteln wollen, stellen Sie sie auf einen kleineren Wert. Speisen Sie einen hochgenauen kleinen Strom ein und ermitteln Sie den nicht mehr tolerierbaren Messfehler. Danach parametrieren Sie die Untergrenze Strommessung auf den ermittelten Grenzwert.

Wird die Untergrenze Strommessung unterschritten, werden folgende Messwerte und abgeleitete Größen der betroffenen Phase zurückgesetzt:

- Effektivwert Strom
- Wirkleistung
- Blindleistung
- Scheinleistung
- Phasenwinkel
- Leistungsfaktor

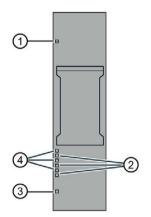
Die Leistungswerte unterliegen einer gleitenden Mittelwertbildung und werden nach entsprechender Zeit erst zu "0". Die Energiezähler für Wirk-, Blind- und Scheinenergie der abgelöschten Phase zählen nicht weiter.

Stromwandler Primärstrom

Geben Sie hier den Nennwert für den Primärstrom des eingesetzten Stromwandlers ein. Das Wandlerverhältnis wird aus dem Primär- und Sekundärstrom ermittelt.

Stromwandler Sekundärstrom

Geben Sie hier den Nennwert für den Sekundärstrom (1A oder 5A) des eingesetzten Stromwandlers ein. Das Wandlerverhältnis wird aus dem Primär- und Sekundärstrom ermittelt.


Stromrichtung umkehren

Einstellung, ob Sie die Stromrichtung umkehren oder nicht.

Falls irrtümlich der Anschluss verkehrt herum erfolgt ist, kann dieser Parameter benutzt werden, um die Messwerte zu berichtigen. Sie sparen die Umverdrahtung. Die Richtung des Stroms ist nur anhand der Leistungsmesswerte ersichtlich. Der Strommesswert ist ein Effektivwert.

9.1 Status- und Fehleranzeige

LED-Anzeige

- ① DIAG (grün/rot)
- ② Fehler (rot)
- 3 PWR (grün)
- 4 Status (grün)

Bild 9-1 LED-Anzeige

Bedeutung der LED-Anzeigen

In der nachfolgenden Tabelle finden Sie die Bedeutung der Status- und Fehleranzeigen erläutert. Abhilfemaßnahmen für Diagnosemeldungen finden Sie im Kapitel Diagnosemeldungen (Seite 63).

LED DIAG

Tabelle 9-1 Bedeutung der LED DIAG

DIAG	Bedeutung
	Versorgungsspannung des ET 200SP nicht in Ordnung
aus	
渋	Modul nicht betriebsbereit (nicht parametriert)
blinkt	
	Modul parametriert und keine Moduldiagnose
ein	
崇	Modul parametriert und Moduldiagnose
blinkt	

LED Status

Tabelle 9-2 Bedeutung der LED Status

Status	Bedeutung
	Kanal deaktiviert oder Fehler
aus	
ein	Kanal aktiviert und kein Fehler

LED Fehler

Tabelle 9-3 Bedeutung der LED Fehler

Status	Bedeutung
	Kanal ist in Ordnung
aus	
	Kanal fehlerhaft
ein	

LED PWR

Tabelle 9-4 Bedeutung der LED PWR

PWR	Bedeutung
	Netzspannung fehlt
aus	
	Netzspannung vorhanden
ein	

9.2 Alarme

Das Analogeingabemodul Al Energy Meter 400VAC ST unterstützt Diagnosealarme.

9.2.1 Diagnosealarm

Diagnosealarm

Bei folgenden Ereignissen erzeugt das Modul einen Diagnosealarm:

- Kanal temporär nicht verfügbar
- Fehler
- Versorgungsspannung fehlt
- Parametrierfehler
- unterer Grenzwert Spannung unterschritten (Messspannung < 80 V)
- oberer Grenzwert Spannung überschritten
- Unterlauf Spannung (Toleranzwert Netzspannung) unterschritten
- Überlauf Spannung (Toleranzwert Netzspannung) überschritten
- Überlast (Strommesswert > 12 A oder Toleranzwert Überstrom nach Ablauf der Toleranzzeit überschritten)
- Überlauf der Rechenwerte (Mess- oder Rechenwerte überschreiten den darstellbaren Wertebereich)

Siehe auch

Diagnosemeldungen (Seite 63)

9.3 Diagnosemeldungen

Diagnosemeldungen

Hinweis

Zuordnung Kanal in Diagnosemeldung ⇔ Phase

In den Diagnosemeldungen werden die Kanäle ab Kanal "0" gezählt, im Al Energy Meter 400VAC ST ab Phase "1".

Beachten Sie folgende Zuordnung:

- Kanal "0" ⇔ Phase "1"
- Kanal "1" ⇔ Phase "2"
- Kanal "2" ⇔ Phase "3"

Tabelle 9-5 Fehlertypen

Diagnosemeldung	Fehlercode	Bedeutung	Abhilfe
Unterspannung ¹	2н	Netzspannung (Messbereich) wird auf	Netzspannungsbereich einhalten
Überspannung	3н	Toleranz überwacht. Verletzung führt zu Über-/Unterlauf Spannung.	
Überlast	4н	Mess-Strom wird nach Ablauf der "Tole- ranzzeit" auf "Toleranzwert Überstrom [0.1 A]" überwacht. Eine Überschreitung ergibt Überlauf Strom.	Strombereich einhalten
		Der Maximalwert des Sekundärstroms (12 A) wird überschritten.	
Oberer Grenzwert	7н	Summenüberlauf in den Rechengrößen	-
Unterer Grenzwert ¹	8н	Die untere Messgrenze Spannungsmessung wird unterschritten. Die Meldung tritt auf, wenn projektierter minimaler Strom oder Spannung unter 80 V liegt.	Spannungsbereich einhalten
Fehler	9н	Interner Modulfehler ist aufgetreten (Diagnosemeldung auf Kanal 0 gilt für das gesamte Modul).	Austausch des Moduls
Parametrierfehler	10н	 Modul kann Parameter für den Kanal nicht verwerten. Parametrierung fehlerhaft. 	Korrektur der Parametrierung.
Lastspannung fehlt	11 _H	fehlende oder zu geringe Netzspannung an Phase L1	Versorgung prüfen
Kanal temporär nicht verfügbar	1Fн	Aktualisierung der Firmware wird durchgeführt. Kanal 0 gilt für das gesamte Modul. Das Modul führt in dieser Zeit keine Messungen durch.	
		Am Kanal wird gerade eine Anwenderka- librierung ausgeführt.	Anwenderkalibrierung abschließen

Sind die Diagnosen "Unterspannung" und "Unterer Grenzwert" beide gleichzeitig aktiv, so ist die Diagnose "Unterer Grenzwert" höherprior und löscht "Unterspannung"

9.4 Diagnoseverhalten

Diagnoseverhalten

In diesem Kapitel wird das Verhalten des Al Energy Meter 400VAC ST beschrieben, wenn es eine Diagnose meldet.

Messwerte im Falle von Diagnose

Messwerte werden auch im Falle von Diagnose noch angezeigt, solange diese noch sinnvoll ermittelbar sind. Sind die Messwerte nicht mehr mess- oder berechenbar, wird "0" angezeigt.

Nullpunktunterdrückung

Ist der eingespeiste Strom kleiner als der projektierte Parameter "Untergrenze Strommessung", dann wird der Strommesswert und alle abhängigen Größen unterdrückt oder auf "0" gesetzt.

Überlast in Begrenzung

Ist der eingespeiste Sekundärstrom am Kanal größer als 12 A, geht das Modul in Begrenzung und der Strommesswert und alle abhängigen Größen werden auf "0" gesetzt.

"Untergrenze Strommessung" wird unterschritten

Wird die "Untergrenze Strommessung" unterschritten, werden folgende Messwerte und abgeleitete Größen der betroffenen Phase zurückgesetzt:

- Effektivwert Strom
- Wirkleistung
- Blindleistung
- Scheinleistung
- Phasenwinkel
- Leistungsfaktor

Die Leistungswerte unterliegen einer gleitenden Mittelwertbildung und werden nach entsprechender Zeit erst zu "0". Die Energiezähler für Wirk-, Blind-, und Scheinenergie der zurückgesetzten Phase zählen nicht weiter.

Verlust der Versorgungsspannung

Bei Verlust der Versorgungsspannung an U_{L1} (Phase 1) werden alle Messungen unterbrochen.

Nach Wiederkehr der Versorgungsspannung arbeitet das Al Energy Meter 400VAC ST wieder mit der in der CPU gespeicherten Projektierung/Parametrierung. Der Energiezähler wird für remanent gespeicherte Werte verwendet.

Eingangsdaten auf "0"

Hinweis

Wird das AI Energy Meter 400VAC ST nicht mehr vom Interfacemodul erkannt (z. B. weil es defekt oder nicht gesteckt ist), dann werden alle Eingangsdaten auf "0" gesetzt.

Technische Daten 10

10.1 Technische Daten

Technische Daten des Al Energy Meter 400VAC ST

Artikelnummer	6ES7134-6PA01-0BD0		
Allgemeine Informationen			
Produkttyp-Bezeichnung	ET 200SP, AI Energy Meter AC 400 V ST, VPE 1		
Firmware-Version	V3.0		
verwendbare BaseUnits	BU-Typ D0, BU20-P12+A0+0B		
Produktfunktion			
 Spannungsmessung 	Ja		
 Spannungsmessung mit Spannungswand- ler 	Nein		
 Strommessung 	Ja		
Phasenstrommessung ohne Stromwandler	Nein		
Phasenstrommessung mit Stromwandler	Ja		
 Energiemessung 	Ja		
Frequenzmessung	Ja		
Leistungsmessung	Ja		
Wirkleistungsmessung	Ja		
Blindleistungsmessung	Ja		
I&M-Daten	Ja; I&M0 bis I&M3		
taktsynchroner Betrieb	Nein		
Engineering mit			
 STEP 7 TIA Portal projektierbar/integriert ab Version 	V13 SP1		
STEP 7 projektierbar/integriert ab Version	ab V5.5 SP4		
PROFIBUS ab GSD-Version/GSD-Revision	GSD Revision 5		
PROFINET ab GSD-Version/GSD-Revision	V2.3		

Artikelnummer	6ES7134-6PA01-0BD0
Betriebsart	0E07104-01701-0550
zyklische Messung	Ja
azyklische Messung	Ja
azyklischer Messwertzugriff	Ja
	Ja
fest definierte Messwert-Sets	
frei definierte Messwert-Sets	Nein
Konfigurationssteuerung	
über Datensatz	Ja
CiR - Configuration in RUN	
Umparametrieren im RUN möglich	Ja
Kalibrieren im RUN möglich	Nein
Aufbauart/Montage	
Einbaulage	Beliebig
Versorgungsspannung	
Ausführung der Spannungsversorgung	Versorgung über Spannungs-Messkanal L1
Spannungsart der Versorgungsspannung	AC 100 - 240 V
zulässiger Bereich, untere Grenze (AC)	90 V
zulässiger Bereich, obere Grenze (AC)	264 V
Netzfrequenz	
 zulässiger Bereich, untere Grenze 	47 Hz
zulässiger Bereich, obere Grenze	63 Hz
Verlustleistung	
Verlustleistung, typ.	0,6 W
Adressbereich	
Adressraum je Modul	
Adressraum je Modul, max.	44 byte; 32 byte Eingabe / 12 byte Ausgabe
Hardware-Ausbau	
automatische Kodierung	
 mechanisches Kodierelement 	Ja
Uhrzeit	
Betriebsstundenzähler	
 vorhanden 	Nein
Analogeingaben	
Zykluszeit (alle Kanäle), typ.	50 ms; Zeit für die konsistente Aktualisierung aller Mess- und Rechenwerte (zyklische und azyklische Daten)

10.1 Technische Daten

Artikelnummer	6ES7134-6PA01-0BD0
Alarme/Diagnosen/Statusinformationen	
Alarme	
Diagnosealarm	Ja
Grenzwertalarm	Nein
 Prozessalarm 	Nein
Diagnoseanzeige LED	
 Überwachung der Versorgungsspannung (PWR-LED) 	Ja
Kanalstatusanzeige	Ja; grüne LED
für Kanaldiagnose	Ja; rote Fn LED
für Moduldiagnose	Ja; grüne / rote DIAG-LED
Integrierte Funktionen	
Mess-Funktionen	
Messverfahren für Spannungsmessung	TRMS
Messverfahren für Strommessung	TRMS
Art der Messwerterfassung	lückenlos
Kurvenform der Spannung	sinusförmig oder verzerrt
Pufferung von Messgrößen	Nein
Parameterlänge	38 byte
Bandbreite der Messwerterfassung	2 kHz; Oberwellen: 39 / 50 Hz, 32 / 60 Hz
Betriebsart für Messwerterfassung	
 automatische Netzfrequenzerfassung 	Nein; parametrierbar
Messbereich	
 Frequenzmessung, min. 	45 Hz
 Frequenzmessung, max. 	65 Hz

Artikelnummer		6ES7134-6PA01-0BD0
Messeing	änge für Spannung	
-	messbare Netzspannung zwischen Phase und Neutralleiter	230 V
-	messbare Netzspannung zwischen den Außenleitern	400 V
-	messbare Netzspannung zwischen Phase und Neutralleiter, min.	90 V
-	messbare Netzspannung zwischen Phase und Neutralleiter, max.	264 V
-	messbare Netzspannung zwischen den Außenleitern, min.	155 V
-	messbare Netzspannung zwischen den Außenleitern, max.	460 V
-	Messkategorie für Spannungsmessung gemäß IEC 61010-2-030	CAT II; CAT III bei garantiertem Schutzpegel von 1,5 kV
-	Innenwiderstand Außenleiter und Neutralleiter	3,4 M Ω
_	Leistungsaufnahme je Phase	20 mW
_	Stoßspannungsfestigkeit 1,2/50µs	1 kV
Messeingänge für Strom		
-	relativer messbarer Strom bei AC, min.	5 %; bezogen auf den sekundären Bemessungsstrom; 1 A, 5 A
-	relativer messbarer Strom bei AC, max.	100 %; bezogen auf den sekundären Bemessungsstrom; 1 A, 5 A
_	Dauerstrom bei AC, maximal zulässig	5 A
-	Scheinleistungsaufnahme je Phase bei Messbereich 5 A	0,6 V·A
-	Bemessungswert Kurzzeitstromfestig- keit befristet auf 1 s	100 A
-	Eingangswiderstand Messbereich 0 bis 5 A	25 mΩ; an der Klemme
-	Nullpunkt-Unterdrückung	Parametrierbar: 20 250 mA, default 50 mA
_	Stoßüberlastbarkeit	10 A; für 1 Minute

10.1 Technische Daten

Artikelnummer	6ES7134-6PA01-0BD0
Genauigkeitsklasse gemäß IEC 61557-12	
 Messgröße Spannung 	0,5
 Messgröße Strom 	0,5
 Messgröße Scheinleistung 	1
 Messgröße Wirkleistung 	1
 Messgröße Blindleistung 	1
 Messgröße Leistungsfaktor 	0,5
 Messgröße Wirkarbeit 	1
 Messgröße Blindarbeit 	2
 Messgröße Phasenwinkel 	±1 °; nicht von der IEC 61557-12 erfasst
 Messgröße Frequenz 	0,05
Potenzialtrennung	
Potenzialtrennung Kanäle	
zwischen den Kanälen und Rückwandbus	Ja; AC 3 700 V (Type Test) CAT III
Isolation	
Isolation geprüft mit	AC 2 300 V für 1 min (Type Test)
Umgebungsbedingungen	
Umgebungstemperatur im Betrieb	0.00
waagerechte Einbaulage, min.	0 °C
waagerechte Einbaulage, max.	0 °C
senkrechte Einbaulage, min.	0 °C
 senkrechte Einbaulage, max. 	50 °C
Maße	
Breite	20 mm
Höhe	73 mm
Tiefe	58 mm
Gewichte	
Gewicht (ohne Verpackung)	45 g
Daten zur Auswahl eines Stromwandlers	
Bürdenleistung Stromwandler x/1A, min.	abhängig von Leitungslänge und Leitungsquer- schnitt, siehe Gerätehandbuch
Bürdenleistung Stromwandler x/5A, min.	abhängig von Leitungslänge und Leitungsquer- schnitt, siehe Gerätehandbuch

ATEX-Zulassung

nach EN 60079-15 (Electrical apparatus for potentially explosive atmospheres; Type of protection "n") und EN 60079-0 (Electrical apparatus for potentially explosive gas atmospheres - Part 0: General Requirements)

Maßbild

Siehe Gerätehandbuch ET 200SP BaseUnits (http://support.automation.siemens.com/WW/view/de/59753521)

Parameterdatensätze

A.1 Parametrierung über Parameterdatensätze

Die Parameterdatensätze des Moduls haben einen identischen Aufbau - unabhängig davon, ob Sie das Modul mit PROFIBUS DP oder PROFINET IO projektieren.

Parametrierung im Anwenderprogramm

Sie können das Modul im RUN umparametrieren, z. B. das Diagnoseverhalten ändern.

Parameter ändern im RUN

Die Parameter werden mit der Anweisung WRREC über den jeweiligen Datensatz an das Modul übertragen. Dabei werden die mit STEP 7 eingestellten Parameter in der CPU nicht geändert, d. h. nach einem Anlauf sind wieder die mit STEP 7 eingestellten Parameter gültig.

Wenn Sie ein Modul umprojektieren (so dass sich die Nutzdatengröße ändert) und vor der Umprojektierung Diagnosen anstehen, dann werden diese Diagnosen nicht als "gehend" gemeldet.

Ausgangsparameter STATUS

Wenn bei der Übertragung der Parameter mit der Anweisung WRREC Fehler auftreten, dann arbeitet das Modul mit der bisherigen Parametrierung weiter. Der Ausgangsparameter STATUS enthält aber einen entsprechenden Fehlercode.

Die Beschreibung der Anweisung WRREC und der Fehlercodes finden Sie in der Online-Hilfe von STEP 7.

A.2 Aufbau des Parameterdatensatzes 128 für das Gesamtmodul

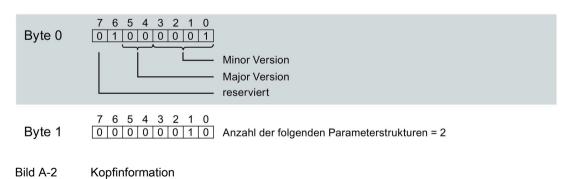

Aufbau Datensatz 128

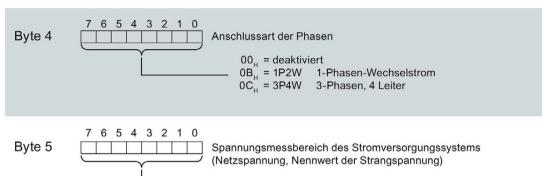
Bild A-1 Aufbau Parameterdatensatz 128

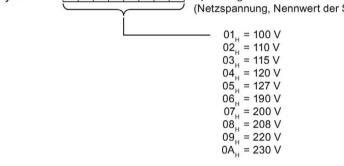
Kopfinformation

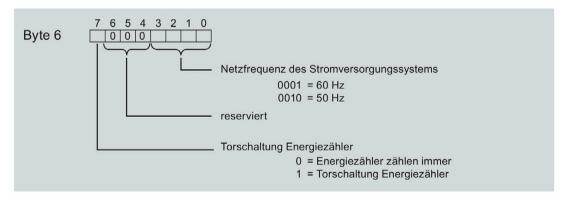
Das folgende Bild zeigt Ihnen den Aufbau der Kopfinformation.

A.2 Aufbau des Parameterdatensatzes 128 für das Gesamtmodul

Kopfinformation Modul


Das folgende Bild zeigt Ihnen den Aufbau der Kopfinformation Modul.


	Byte 2	7 6 5 4 3 2 1 0 0 1 0 0 0 0 1 Anzahl der folgenden Modulparameterblöcke = 1
	Byte 3	7 6 5 4 3 2 1 0 0 0 0 0 1 0 0 0 0 Länge des folgenden Modulparameterblocks = 8
E	Bild A-3	Kopfinformation Modul


Modulparameterblock


Das folgende Bild zeigt Ihnen den Aufbau des Modulparameterblocks.

Sie aktivieren einen Parameter, indem Sie das entsprechende Bit auf "1" setzen.

A.2 Aufbau des Parameterdatensatzes 128 für das Gesamtmodul

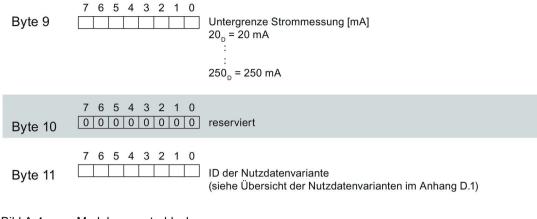
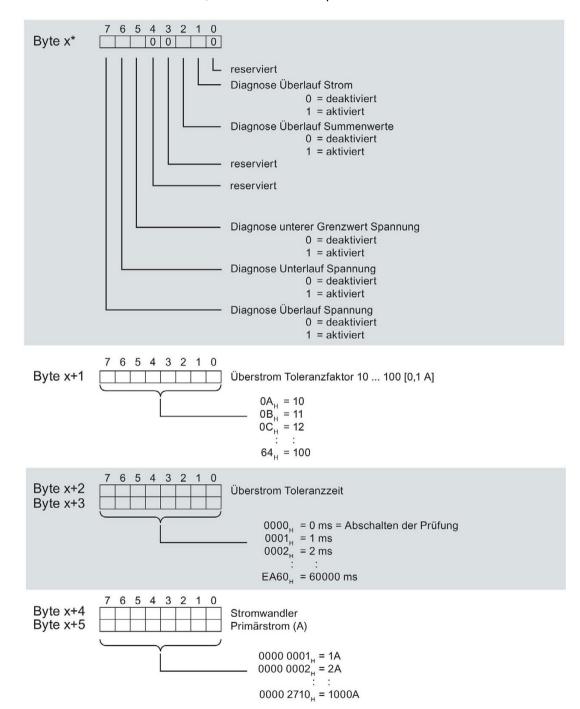
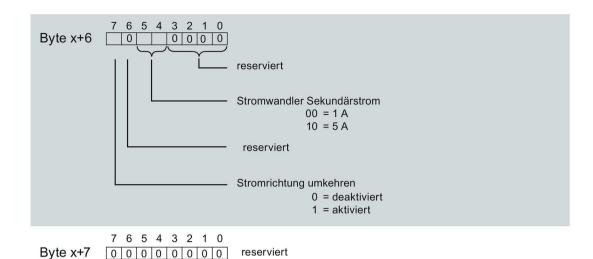


Bild A-4 Modulparameterblock

Die Nutzdatenvariante finden Sie im Kapitel Übersicht der Nutzdatenvarianten (Seite 92).


Kopfinformation Kanal


Das folgende Bild zeigt Ihnen den Aufbau der Kopfinformation Kanal.

Kanalparameterblock

Das folgende Bild zeigt Ihnen den Aufbau des Kanalparameterblocks.

Sie aktivieren einen Parameter, indem Sie das entsprechende Bit auf "1" setzen.

* x = 14 für Kanal 0 (Phase 1); 22 für Kanal 1 (Phase 2); 30 für Kanal 2 (Phase 3)

Bild A-6 Kanalparameterblock

Fehler bei Übertragung des Datensatzes

Das Modul überprüft immer sämtliche Werte des übertragenenen Datensatzes. Nur wenn sämtliche Werte ohne Fehler übertragen wurden, übernimmt das Modul die Werte aus dem Datensatz.

Die Anweisung WRREC für das Schreiben von Datensätzen liefert bei Fehlern im Parameter STATUS entsprechende Fehlercodes zurück.

Die folgende Tabelle zeigt die modulspezifischen Fehlercodes und deren Bedeutung für den Parameterdatensatz 128.

Feh		m Param TUS ezimal)	eter	Bedeutung	Abhilfe
Byte 0	Byte 1	Byte 2	Byte 3		
DF	80	В0	00	Nummer des Datensatzes unbekannt	Gültige Nummer für Datensatz eintragen.
DF	80	B1	00	Länge des Datensatzes nicht korrekt	Zulässigen Wert für Datensatzlänge eintragen.
DF	80	B2	00	Steckplatz ungültig oder nicht erreichbar.	Station überprüfen, ob Modul gesteckt oder gezogen ist.
					Zugewiesene Werte für Parameter der Anweisung WRREC überprüfen.
DF	80	E0	01	Falsche Version	Byte 0 prüfen. Gültige Werte eintragen.
DF	80	E0	02	Fehler in den Kopfinformationen	Byte 1 und 2 prüfen. Länge und Anzahl der Parameterblöcke korrigieren.
DF	80	E1	01	Reservierte Bits sind nicht 0.	Byte 6, 10, 14, 2022, 2830, 36 und 37 prüfen und reservierte Bits wieder auf 0 setzen.

Feh	Fehlercode im Parameter STATUS (hexadezimal)			Bedeutung	Abhilfe
Byte 0 Byte 1 Byte 2 Byte 3		Byte 3			
DF	80	E1	02	Reservierte Bits sind nicht 0.	Byte 8 prüfen und reservierte Bits wieder auf 0 setzen.
DF	80	E1	05	Messbereich für Spannung ungültig.	Byte 5 prüfen. Zulässige Werte: 01 _H bis 0C _H
DF	80	E1	20	Anschlussart ungültig.	Byte 4 prüfen. Zulässige Werte: 00 _H , 0B _H 01 _H
DF	80	E1	21	Parameter für Nutzdatenvariante im DS 128 nicht möglich oder Inputdatenprojektierung nicht groß genug.	Byte 11 prüfen. Andere Nutzdatenvariante wählen oder Projektierung ändern.
DF	80	E1	22	Parameter für Nutzdatenvariante ist ungültig.	Byte 11 prüfen. Gültige Kodierung für Nutzdatenvariante wählen.
DF	80	E1	23	Parameter für Frequenz ist ungültig.	Byte 6 prüfen. Gültige Werte eintragen.
DF	80	E1	24	Parameter für Toleranz Netzspannung ist ungültig.	Byte 7 prüfen. Gültige Werte eintragen.
DF	80	E1	25	Parameter für Stromwandler Sekundärstrom ist ungültig.	Bit 45 in Byte 20, 28, 36 prüfen. Gültige Werte eintragen.
DF	80	E1	26	Reservierte Parameterbits für Stromwandler sekundär sind nicht Null.	In Byte 20, 28 und 36 in Bit 03 und Bit 6 = 0 eintragen.
DF	80	E1	29	Parameter für Toleranzwert Überstrom ungültig.	Byte 15, 23, 31 prüfen. Gültige Werte eintragen.
DF	80	E1	30	Parameter für Toleranzzeit Überstrom ungültig.	Byte 1617, 2425, 3233 prüfen. Gültige Werte eintragen.
DF	80	E1	2B	Parameter für Untergrenze Strommessung ungültig	Byte 9 prüfen. Gültige Werte eintragen.
DF	80	E1	2C	Parameter für Stromwandler Primärstrom ungültig.	Byte 1819, 2627, 3435 prüfen. Gültige Werte eintragen.
DF	80	E1	30	Ungültige Datensatznummer.	Datensatznummer prüfen. Gültige Datensatznummer eintragen.

Messgrößen

Messgrößen für Datensätze und Nutzdaten

Folgende Tabelle enthält eine Übersicht aller Messgrößen, die in den Datensätzen und Nutzdaten verwendet werden.

Beachten Sie, dass sich Format und Einheit bei der Auswertung von Datensätzen und Nutzdaten unterscheiden.

Tabelle B- 1 Messgrößen für Datensätze und Nutzdaten

Mess-	Messgrößen	Datentyp	Einheit	Wertebereich	Anschlussart	
wert-ID					1P2W	3P4W
1	Spannung UL1-N 1	REAL	V	0.0 300.0	✓	✓
2	Spannung UL2-N ¹	REAL	V	0.0 300.0		✓
3	Spannung UL3-N ¹	REAL	V	0.0 300.0		✓
4	Spannung UL1-L2 ²	REAL	V	0.0 600.0		✓
5	Spannung UL2-L3 ²	REAL	V	0.0 600.0		1
6	Spannung UL3-L1 ²	REAL	V	0.0 600.0		1
7	Strom L1 ¹	REAL	Α	0.0 10000.0	✓	✓
8	Strom L2 ¹	REAL	Α	0.0 10000.0		✓
9	Strom L3 ¹	REAL	Α	0.0 10000.0		✓
10	Scheinleistung L1 ³	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹	✓	✓
11	Scheinleistung L2 ³	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹		✓
12	Scheinleistung L3 ³	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹		✓
13	Wirkleistung L1 ³	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹	✓	✓
14	Wirkleistung L2 ³	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹		
15	Wirkleistung L3 ³	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹		✓
16	Blindleistung L1 ³	REAL	var	-3.0 x 10 ⁹ +3.0 x 10 ⁹	✓	1
17	Blindleistung L2 ³	REAL	var	-3.0 x 10 ⁹ +3.0 x 10 ⁹		✓
18	Blindleistung L3 ³	REAL	var	-3.0 x 10 ⁹ +3.0 x 10 ⁹		1
19	Leistungsfaktor L1 ³	REAL	-	0.0 1.0	✓	✓
20	Leistungsfaktor L2 ³	REAL	-	0.0 1.0		✓

Mess-	Messgrößen	Datentyp	Einheit	Wertebereich	Anschlussart		
wert-ID					1P2W	3P4W	
21	Leistungsfaktor L3 ³	REAL	-	0.0 1.0		✓	
30	Frequenz ⁴	REAL	Hz	45.0 65.0	✓	✓	
34	Gesamt-Wirkleistung L1L2L3 ⁵	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹	✓	✓	
35	Gesamt-Blindleistung L1L2L3 ⁵	REAL	var	-3.0 x 10 ⁹ +3.0 x 10 ⁹	✓	✓	
36	Gesamt-Scheinleistung L1L2L3 ⁵	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹	✓	✓	
37	Gesamt-Leistungsfaktor L1L2L3 ^{6 7}	REAL	-	0.0 1.0	✓	✓	
38	Amplitudensymmetrie bei Spannung 2	REAL	%	0 100		✓	
39	Amplitudensymmetrie bei Strom ²	REAL	%	0 200		✓	
200	Gesamt-Wirkenergie Bezug L1L2L3 ⁶	REAL	Wh	0.0 3.4 x 10 ³⁸	✓	✓	
201	Gesamt-Wirkenergie Abgabe L1L2L3 ⁶	REAL	Wh	0.0 3.4 x 10 ³⁸	✓	✓	
202	Gesamt-Blindenergie Bezug L1L2L3 ⁶	REAL	varh	0.0 3.4 x 10 ³⁸	✓	✓	
203	Gesamt-Blindenergie Abgabe L1L2L3	REAL	varh	0.0 3.4 x 10 ³⁸	✓	✓	
204	Gesamt-Scheinenergie L1L2L3 ⁶	REAL	VAh	0.0 3.4 x 10 ³⁸	✓	✓	
205	Gesamt-Wirkenergie L1L2L3 ⁶	REAL	Wh	-3.4 x 10 ³⁸ +3.4 x 10 ³⁸	✓	✓	
206	Gesamt-Blindenergie L1L2L3 ⁶	REAL	varh	-3.4 x 10 ³⁸ +3.4 x 10 ³⁸	✓	✓	
210	Gesamt-Wirkenergie Bezug L1L2L3 6	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
211	Gesamt-Wirkenergie Abgabe L1L2L3	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
212	Gesamt-Blindenergie Bezug L1L2L3 ⁶	LREAL	varh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
213	Gesamt-Blindenergie Abgabe L1L2L3	LREAL	varh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
214	Gesamt-Scheinenergie L1L2L3 ⁶	LREAL	VAh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
215	Gesamt-Wirkenergie L1L2L3 ⁶	LREAL	Wh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸	✓	✓	
216	Gesamt-Blindenergie L1L2L3 ⁶	LREAL	varh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸	✓	✓	
220	Gesamt-Wirkenergie Bezug L1L2L3 ⁶	UDINT	Wh	0 2147483647	✓	✓	
221	Gesamt-Wirkenergie Abgabe L1L2L3	UDINT	varh	0 2147483647	1	✓	
222	Gesamt-Blindenergie Bezug L1L2L3 ⁶	UDINT	varh	0 2147483647	✓	✓	
223	Gesamt-Blindenergie Abgabe L1L2L3	UDINT	VAh	0 2147483647	1	✓	
224	Gesamt-Scheinenergie L1L2L3 ⁶	UDINT	Wh	0 2147483647	✓	✓	
225	Gesamt-Wirkenergie L1L2L3 ⁶	DINT	Wh	-2147483647 +2147483647	1	✓	
226	Gesamt-Blindenergie L1L2L3 ⁶	DINT	varh	-2147483647 +2147483647	✓	✓	

Mess-	Messgrößen	Datentyp	Einheit	Wertebereich	Anschlussart		
wert-ID					1P2W	3P4W	
61178	Phasenwinkel L1 ³	REAL	۰	0.0 360.0	✓	✓	
61180	Wirkenergie Bezug L1 ⁶	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
61181	Wirkenergie Abgabe L1 ⁶	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
61182	Blindenergie Bezug L1 ⁶	LREAL	varh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
61183	Blindenergie Abgabe L1 ⁶	LREAL	varh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
61184	Scheinenergie L1 ⁶	LREAL	VAh	0.0 1.8 x 10 ³⁰⁸	✓	✓	
61185	Wirkenergie L1 ⁶	LREAL	Wh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸	1	✓	
61186	Blindenergie L1 ⁶	LREAL	varh	1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸	1	✓	
61198	Phasenwinkel L2 ³	REAL	٥	0.0 360.0		✓	
61200	Wirkenergie Bezug L2 ⁶	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸		✓	
61201	Wirkenergie Abgabe L2 ⁶	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸		✓	
61202	Blindenergie Bezug L2 ⁶	LREAL	varh	0.0 1.8 x 10 ³⁰⁸		✓	
61203	Blindenergie Abgabe L2 ⁶	LREAL	varh	0.0 1.8 x 10 ³⁰⁸		✓	
61204	Scheinenergie L2 ⁶	LREAL	VAh	0.0 1.8 x 10 ³⁰⁸		✓	
61205	Wirkenergie L2 ⁶	LREAL	Wh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸		✓	
61206	Blindenergie L2 ⁶	LREAL	varh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸		✓	
61218	Phasenwinkel L3 ³	REAL		0.0 360.0		✓	
61220	Wirkenergie Bezug L3 ⁶	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸		✓	
61221	Wirkenergie Abgabe L3 ⁶	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸		✓	
61222	Blindenergie Bezug L3 ⁶	LREAL	varh	0.0 1.8 x 10 ³⁰⁸		✓	
61223	Blindenergie Abgabe L3 ⁶	LREAL	varh	0.0 1.8 x 10 ³⁰⁸		✓	
61224	Scheinenergie L3 ⁶	LREAL	VAh	0.0 1.8 x 10 ³⁰⁸		✓	
61225	Wirkenergie L3 ⁶	LREAL	Wh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸		✓	
61226	Blindenergie L3 ⁶	LREAL	varh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸		✓	
62110	Wirkenergie Bezug L1 ⁶	UDINT	Wh	0 2147483647	✓	✓	
62111	Wirkenergie Abgabe L1 ⁶	UDINT	Wh	0 2147483647	✓	✓	
62112	Blindenergie Bezug L1 ⁶	UDINT	Varh	0 2147483647	✓	✓	
62113	Blindenergie Abgabe L1 ⁶	UDINT	Varh	0 2147483647	✓	✓	
62114	Scheinenergie L1 ⁶	UDINT	Wh	0 2147483647	✓	✓	
62210	Wirkenergie Bezug L2 ⁶	UDINT	Wh	0 2147483647		✓	
62211	Wirkenergie Abgabe L2 ⁶	UDINT	Wh	0 2147483647		✓	
62212	Blindenergie Bezug L2 ⁶	UDINT	Varh	0 2147483647		✓	
62213	Blindenergie Abgabe L2 ⁶	UDINT	Varh	0 2147483647		✓	
62214	Scheinenergie L2 ⁶	UDINT	VAh	0 2147483647		✓	
62310	Wirkenergie Bezug L3 ⁶	UDINT	Wh	0 2147483647		✓	
62311	Wirkenergie Abgabe L3 ⁶	UDINT	Wh	0 2147483647		✓	

Mess-	Messgrößen	Datentyp	Einheit	Wertebereich	Anschlussart		
wert-ID					1P2W	3P4W	
62312	Blindenergie Bezug L3 ⁶	UDINT	Varh	0 2147483647		✓	
62313	Blindenergie Abgabe L3 ⁶	UDINT	Varh	0 2147483647		✓	
62314	Scheinenergie L3 ⁶	UDINT	VAh	0 2147483647		✓	
66001	Spannung UL1-N ¹	UINT	0,01 V	0 30000	✓	✓	
66002	Spannung UL2-N ¹	UINT	0,01 V	0 30000		✓	
66003	Spannung UL3-N ¹	UINT	0,01 V	0 30000		✓	
66004	Spannung UL1-L2 ²	UINT	0,01 V	0 30000		✓	
66005	Spannung UL2-L3 ²	UINT	0,01 V	0 30000		✓	
66006	Spannung UL3-L1 ²	UINT	0,01 V	0 30000		✓	
66007	Strom L1 ¹	UINT	1 mA	0 65535	✓	✓	
66008	Strom L2 ¹	UINT	1 mA	0 65535		✓	
66009	Strom L3 ¹	UINT	1 mA	0 65535		✓	
66010	Scheinleistung L1 ³	INT	1 VA	-27648 27648	✓	✓	
66011	Scheinleistung L2 ³	INT	1 VA	-27648 27648		✓	
66012	Scheinleistung L3 ³	INT	1 VA	-27648 27648		✓	
66013	Wirkleistung L1 ³	INT	1 W	-27648 27648	✓	✓	
66014	Wirkleistung L2 ³	INT	1 W	-27648 27648		✓	
66015	Wirkleistung L3 ³	INT	1 W	-27648 27648		✓	
66016	Blindleistung L1 ³	INT	1 var	-27648 27648	✓	✓	
66017	Blindleistung L2 ³	INT	1 var	-27648 27648		✓	
66018	Blindleistung L3 ³	INT	1 var	-27648 27648		✓	
66019	Leistungsfaktor L1 ³	USINT	0,01	0 100	✓	✓	
66020	Leistungsfaktor L2 ³	USINT	0,01	0 100		✓	
66021	Leistungsfaktor L3 ³	USINT	0,01	0 100		✓	
66030	Frequenz ⁴	USINT	1 Hz	45 65	✓	✓	
66034	Gesamt-Wirkleistung L1L2L3 5	INT	1 W	-27648 27648	✓	✓	
6035	Gesamt-Blindleistung L1L2L3 5	INT	1 var	-27648 27648	✓	✓	
66036	Gesamt-Scheinleistung L1L2L3 5	INT	1 VA	-27648 27648	✓	✓	
66037	Gesamt-Leistungsfaktor L1L2L3 ⁶	USINT	0,01	0 100	✓	✓	
66038	Frequenz ⁴	UINT	0,01 Hz	4500 6500	✓	✓	

¹ Effektivwert

² IEC 61557-12

³ arithmetisches Mittel über 200 ms als gleitender Mittelwert

⁴ arithmetisches Mittel über 10 s als gleitender Mittelwert

⁵ einfache Summation

⁶ Berechnung ab Start/Neustart (Bezug- und Abgabewerte sind positive Zahlen)

⁷ aus Verhältnis von Wirk- und Scheinleistung ermittelt

Format

Tabelle B- 2 Format und deren Länge in byte

Format in STEP 7 (TIA Portal)	Format nach IEEE	Länge in byte	Anmerkung
BYTE	BYTE	1 byte	Bitfeld mit 8 Bit
WORD	WORD	2 byte	Bitfeld mit 16 Bit
USINT	INT8 (unsigned)	1 byte	Festpunktzahl 8 Bit ohne Vorzeichen
INT	INT16 (signed)	2 byte	Festpunktzahl 16 Bit mit Vorzeichen
UINT	INT16 (unsigned)	2 byte	Festpunktzahl 16 Bit ohne Vorzeichen
UDINT	INT32 (unsigned)	4 byte	Festpunktzahl 32 Bit ohne Vorzeichen
DINT	INT32 (signed)	4 byte	Festpunktzahl 32 Bit mit Vorzeichen
REAL	Float32	4 byte	Gleitpunktzahl 32 Bit mit Vorzeichen
LREAL	Float64	8 byte	Gleitpunktzahl 64 Bit mit Vorzeichen

Modulvarianten

C.1 Modulvariante "2 I / 2 Q"

Nutzdaten des Moduls

Das Modul belegt 2 Byte Eingangs-Nutzdaten und 2 Byte Ausgangs-Nutzdaten für Statusund Steuerinformation. Messgrößen können bei dieser Modulvariante ausschließlich über Messwertdatensätze gelesen werden (keine Messgrößen über Nutzdaten auswertbar).

Aufbau der Eingangs-Nutzdaten

Der Aufbau der Eingangs-Nutzdaten ist fest vorgegeben.

Tabelle C- 1 Aufbau der Eingangs-Nutzdaten (2 Byte)

Byte	Geltungsbereich	Bezeichnung	Bemerkung
0	Modul	Nutzdatenvariante	konstant = 0x80
1	Modul	Qualitätsinformation	Qualitätsbits zur Beschreibung der Qualität der Grundmesswerte

Belegung der Eingangs-Nutzdaten

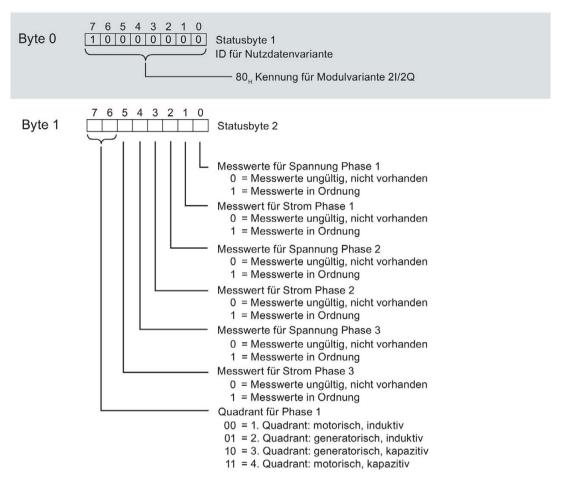


Bild C-1 Belegung der Statusbytes in den Eingangs-Nutzdaten (2 Byte)

Aufbau der Ausgangs-Nutzdaten

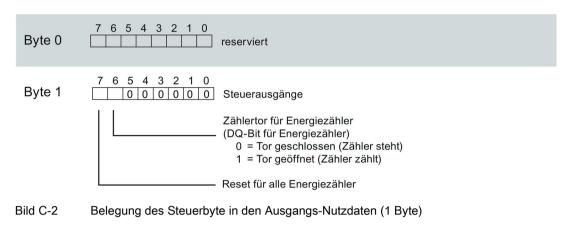

Der Aufbau der Ausgangs-Nutzdaten ist fest vorgegeben.

Tabelle C- 2 Aufbau der Ausgangs-Nutzdaten (2 Byte)

Byte	Geltungsbereich	Bezeichnung	Bemerkung
0	Modul	reserviert	reserviert
1	Modul	Steuerausgänge	Rücksetzen von Werten und Zählern, Torschaltung

Belegung der Ausgangs-Nutzdaten

Über die Ausgangs-Nutzdaten steuern Sie das Zählertor für den Energiezähler.

Hinweis

Bei der Modulvariante 2 I / 2 Q wirkt sich ein Reset immer auf **sämtliche** Energiezähler der drei Phasen aus.

C.2 Modulvariante "32 I / 12 Q"

Nutzdaten des Moduls

Das Modul belegt 32 Byte Eingangs-Nutzdaten und 12 Byte Ausgangs-Nutzdaten. Davon nutzt das Modul für Statusinformationen 2 Byte Eingangsdaten und für Steuerinformationen 12 Byte Ausgangsdaten. Messgrößen können zyklisch über Nutzdaten (Byte 2 bis 31) oder azyklisch über Messwertdatensätze gelesen werden

Aufbau der Eingangs-Nutzdaten

Den Inhalt der Eingangs-Nutzdaten können Sie dynamisch einstellen. Dabei können Sie zwischen verschiedenen Nutzdatenvarianten wählen.

Tabelle C- 3 Aufbau der Eingangs-Nutzdaten (32 Byte)

Byte	Geltungsbereich	Bezeichnung	Bemerkung
0	Modul	Nutzdatenvari- ante	Anzeige der verwendeten Nutzdatenvariante
1	Modul	Qualitätsinfor- mation	Qualitätsbits zur Beschreibung der Qualität der Grundmesswerte
2 31	Modul oder Phase	Daten	2- oder 4-Byte-Messwerte oder Rechenwerte entsprechend Nutzdatenvariante

Belegung der Eingangs-Nutzdaten

Die Messgrößen können Sie im laufenden Betrieb ändern. Dabei können Sie zwischen verschiedenen Nutzdatenvarianten wählen.

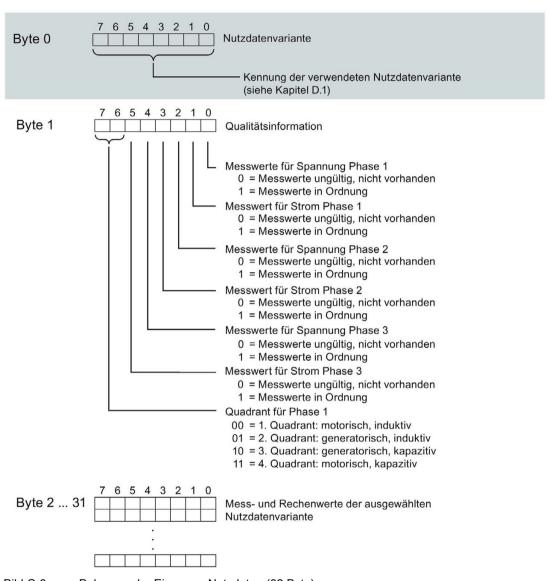


Bild C-3 Belegung der Eingangs-Nutzdaten (32 Byte)

Aufbau der Ausgangs-Nutzdaten

Der Aufbau der Ausgangs-Nutzdaten ist fest vorgegeben und bei allen wählbaren Nutzdatenvarianten gleich.

Über die Ausgangs-Nutzdaten steuern Sie global

- das Rücksetzen für Energiezähler (Reset über Byte 1 und Auswahl über Byte 2)
- das Zählertor für Energiezähler.

Tabelle C- 4 Aufbau der Ausgangs-Nutzdaten (12 Byte)

Byte	Geltungsbereich	Bezeichnung	Bemerkung
0	Modul	Nutzdatenvari- ante	Umschaltung der Nutzdatenvariante
1	Modul	Steuerbyte 1	Rücksetzen von Werten und Zählern, Torschaltung
2	Modul	Steuerbyte 2	Auswahl für Reset der Energiezähler
3 11	reserviert		

Steuerbyte für Nutzdatenvariante

Bild C-4 Belegung des Steuerbytes für Nutzdatenvariante (Byte 0)

Steuerbytes für alle drei Phasen

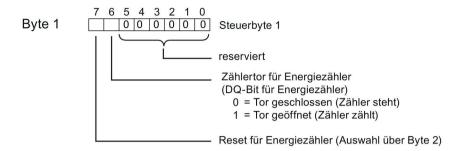


Bild C-5 Belegung des Steuerbytes für alle drei Phasen (Byte 1 und 2)

Nutzdatenvarianten

D.1 Nutzdatenvarianten mit 32 byte Eingangs-/12 byte Ausgangsdaten

Nutzdaten

Bei der Modulvariante 32 I / 12 Q stehen 30 Byte zur Übertragung der Messwerte in einem Zyklus zur Verfügung. Deswegen unterstützt diese Modulvariante das dynamische Umschalten zwischen 11 vorkonfigurierten Nutzdatenvarianten, die eine spezifische Auswahl an Messwerte enthalten.

Weiterführende Informationen finden Sie unter "Wahl der Modulvariante (Seite 24)".

Tabelle D- 1 Übersicht der Nutzdatenvarianten

Nutzdaten	Nutzdatenvariante
Gesamtleistung L1L2L3	254 (FE _н) - Voreinstellung
Wirkleistungen L1L2L3	253 (FD _H)
Blindleistungen L1L2L3	252 (FC _H)
Scheinleistungen L1L2L3	251 (FB _H)
Basismesswerte L1L2L3	250 (FA _H)
Gesamtenergie L1L2L3	249 (F9 _H)
Energie L1	248 (F8 _H)
Energie L2	247 (F7 _H)
Energie L3	246 (F6 _H)
Basisgrößen Dreiphasenmessung L1L2L3	245 (F5 _H)
Basisgrößen Phasenbezogene Messung L1	159 (9F _H)

Gesamtleistungen L1L2L3 (ID 254 oder FE_H)

Tabelle D- 2 Gesamtleistungen L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess wert- ID
0	Nutzdatenvariante	BYTE	-	254 (FE _н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Strom L2	UINT	1 mA	0 65535	66008
6 7	Strom L3	UINT	1 mA	0 65535	66009
8 9	Gesamt-Wirkleistung L1L2L3	INT	1 W	-27648 27648	66034
10 11	Gesamt-Blindleistung L1L2L3	INT	1 var	-27648 27648	66035
12 13	Gesamt-Scheinleistung L1L2L3	INT	1 VA	-27648 27648	66036
14 17	Gesamt-Wirkenergie L1L2L3	DINT	1 Wh	-2147483647 +2147483647	225
18 21	Gesamt-Blindenergie L1L2L3	DINT	1 varh	-2147483647 +2147483647	226
22	reserviert	BYTE	-	0	-
23	Gesamt-Leistungsfaktor L1L2L3	USINT	0,01	0 100	66037
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Strom L2	USINT	-	0 255	-
26	Skalierung Strom L3	USINT	-	0 255	-
27	Skalierung Gesamt-Wirkleistung L1L2L3	USINT	-	0 255	-
28	Skalierung Gesamt-Blindleistung L1L2L3	USINT	-	0 255	-
29	Skalierung Gesamt-Scheinleistung L1L2L3	USINT	-	0 255	-
30	Skalierung Gesamt-Wirkenergie L1L2L3	USINT	-	0 255	-
31	Skalierung Gesamt-Blindenergie L1L2L3	USINT	-	0 255	-

Wirkleistungen L1L2L3 (ID 253 oder FD_H)

Tabelle D- 3 Wirkleistungen L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess wert- ID
0	Nutzdatenvariante	BYTE	-	253 (FD _н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Strom L2	UINT	1 mA	0 65535	66008
6 7	Strom L3	UINT	1 mA	0 65535	66009
8 9	Wirkleistung L1	INT	1 W	-27648 27648	66013
10 11	Wirkleistung L2	INT	1 W	-27648 27648	66014
12 13	Wirkleistung L3	INT	1 W	-27648 27648	66015
14 15	Gesamt-Wirkleistung L1L2L3	INT	1 W	-27648 27648	66034
16 19	Gesamt-Wirkenergie L1L2L3	DINT	1 Wh	-2147483647 +2147483647	225
20	Leistungsfaktor L1	USINT	0,01	0 100	66019
21	Leistungsfaktor L2	USINT	0,01	0 100	66020
22	Leistungsfaktor L3	USINT	0,01	0 100	66021
23	Gesamt-Leistungsfaktor L1L2L3	USINT	0,01	0 100	66037
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Strom L2	USINT	-	0 255	-
26	Skalierung Strom L3	USINT	-	0 255	-
27	Skalierung Wirkleistung L1	USINT	-	0 255	-
28	Skalierung Wirkleistung L2	USINT	-	0 255	-
29	Skalierung Wirkleistung L3	USINT	-	0 255	-
30	Skalierung Wirkleistung L1L2L3	USINT	-	0 255	-
31	Skalierung Gesamt-Wirkenergie L1L2L3	USINT	-	0 255	-

Blindleistungen L1L2L3 (ID 252 oder FC_H)

Tabelle D- 4 Blindleistungen L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	252 (FC _н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Strom L2	UINT	1 mA	0 65535	66008
6 7	Strom L3	UINT	1 mA	0 65535	66009
8 9	Blindleistung L1	INT	1 var	-27648 27648	66016
10 11	Blindleistung L2	INT	1 var	-27648 27648	66017
12 13	Blindleistung L3	INT	1 var	-27648 27648	66018
14 15	Gesamt-Blindleistung L1L2L3	INT	1 var	-27648 27648	66035
16 19	Gesamt-Blindenergie L1L2L3	DINT	1 varh	-2147483647 +2147483647	226
20	Leistungsfaktor L1	USINT	0,01	0 100	66019
21	Leistungsfaktor L2	USINT	0,01	0 100	66020
22	Leistungsfaktor L3	USINT	0,01	0 100	66021
23	Gesamt-Leistungsfaktor L1L2L3	USINT	0,01	0 100	66037
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Strom L2	USINT	-	0 255	-
26	Skalierung Strom L3	USINT	-	0 255	-
27	Skalierung Blindleistung L1	USINT	-	0 255	-
28	Skalierung Blindleistung L2	USINT	-	0 255	-
29	Skalierung Blindleistung L3	USINT	-	0 255	-
30	Skalierung Blindleistung L1L2L3	USINT	-	0 255	-
31	Skalierung Gesamt-Blindenergie L1L2L3	USINT	-	0 255	-

Scheinleistungen L1L2L3 (ID 251 oder FB_H)

Tabelle D- 5 Scheinleistungen L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	251 (FB _н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Strom L2	UINT	1 mA	0 65535	66008
6 7	Strom L3	UINT	1 mA	0 65535	66009
8 9	Scheinleistung L1	INT	1 VA	-27648 27648	66010
10 11	Scheinleistung L2	INT	1 VA	-27648 27648	66011
12 13	Scheinleistung L3	INT	1 VA	-27648 27648	66012
14 15	Gesamt-Scheinleistung L1L2L3	INT	1 VA	-27648 27648	66036
16 19	Gesamt-Scheinenergie L1L2L3	UDINT	1 VAh	0 2147483647	224
20	Leistungsfaktor L1	USINT	0,01	0 100	66019
21	Leistungsfaktor L2	USINT	0,01	0 100	66020
22	Leistungsfaktor L3	USINT	0,01	0 100	66021
23	Gesamt-Leistungsfaktor L1L2L3	USINT	0,01	0 100	66037
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Strom L2	USINT	-	0 255	-
26	Skalierung Strom L3	USINT	-	0 255	-
27	Skalierung Scheinleistung L1	USINT	-	0 255	-
28	Skalierung Scheinleistung L2	USINT	-	0 255	-
29	Skalierung Scheinleistung L3	USINT	-	0 255	-
30	Skalierung Scheinleistung L1L2L3	USINT	-	0 255	-
31	Skalierung Gesamt-Scheinenergie L1L2L3	USINT	-	0 255	-

Basismesswerte L1L2L3 (ID 250 oder FA_H)

Tabelle D- 6 Basismesswerte L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	250 (FA _H)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Strom L2	UINT	1 mA	0 65535	66008
6 7	Strom L3	UINT	1 mA	0 65535	66009
8 9	Spannung UL1-N	UINT	0,01 V	0 30000	66001
10 11	Spannung UL2-N	UINT	0,01 V	0 30000	66002
12 13	Spannung UL3-N	UINT	0,01 V	0 30000	66003
14 15	Spannung UL1-UL2	UINT	0,01 V	0 60000	66004
16 17	Spannung UL2-UL3	UINT	0,01 V	0 60000	66005
18 19	Spannung UL3-UL1	UINT	0,01 V	0 60000	66006
20	Leistungsfaktor L1	USINT	0,01	0 100	66019
21	Leistungsfaktor L2	USINT	0,01	0 100	66020
22	Leistungsfaktor L3	USINT	0,01	0 100	66021
23	Gesamt-Leistungsfaktor L1L2L3	USINT	0,01	0 100	66037
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Strom L2	USINT	-	0 255	-
26	Skalierung Strom L3	USINT	-	0 255	-
27	reserviert	BYTE	-	-	-
28	reserviert	BYTE	-	-	-
29	reserviert	BYTE	-	-	-
30 31	Frequenz	UINT	0,01 Hz	0 65535	66038

D.1 Nutzdatenvarianten mit 32 byte Eingangs-/12 byte Ausgangsdaten

Gesamtenergie L1L2L3 (ID 249 oder F9_H)

Tabelle D-7 Gesamtenergie L1L2L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	249 (F9 _н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2	reserviert	BYTE	-	-	-
3	reserviert	BYTE	-	-	-
4 7	Gesamt-Wirkenergie Bezug L1L2L3	UDINT	1 Wh	0 2147483647	220
8 11	Gesamt-Wirkenergie Abgabe L1L2L3	UDINT	1 Wh	0 2147483647	221
11 15	Gesamt-Blindenergie Bezug L1L2L3	UDINT	1 varh	0 2147483647	222
16 19	Gesamt-Blindenergie Abgabe L1L2L3	UDINT	1 varh	0 2147483647	223
20 23	Gesamt-Scheinenergie L1L2L3	UDINT	1 VAh	0 2147483647	224
24	reserviert	BYTE	-	-	-
25	Skalierung Wirkenergie Bezug	USINT	-	0 255	-
26	Skalierung Wirkenergie Abgabe	USINT	-	0 255	-
27	Skalierung Blindenergie Bezug	USINT	-	0 255	-
28	Skalierung Blindenergie Abgabe	USINT	-	0 255	-
29	Skalierung Scheinenergie	USINT	-	0 255	-
30	reserviert	BYTE	-	-	-
31	Gesamt-Leistungsfaktor L1L2L3	USINT	0,01	0 100	66037

Energie L1 (ID 248 oder F8_H)

Tabelle D-8 Energie L1

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	248 (F8 _H)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 7	Wirkenergie Bezug L1	UDINT	1 Wh	0 2147483647	62110
8 11	Wirkenergie Abgabe L1	UDINT	1 Wh	0 2147483647	62111
11 15	Blindenergie Bezug L1	UDINT	1 varh	0 2147483647	62112
16 19	Blindenergie Abgabe L1	UDINT	1 varh	0 2147483647	62113
20 23	Scheinenergie L1	UDINT	1 VAh	0 2147483647	62114
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Wirkenergie Bezug L1	USINT	-	0 255	-
26	Skalierung Wirkenergie Abgabe L1	USINT	-	0 255	-
27	Skalierung Blindenergie Bezug L1	USINT	-	0 255	-
28	Skalierung Blindenergie Abgabe L1	USINT	-	0 255	-
29	Skalierung Scheinenergie L1	USINT	-	0 255	-
30	reserviert	BYTE	-	-	_
31	Leistungsfaktor L1	USINT	0,01	0 100	66019

Energie L2 (ID 247 oder F7_H)

Tabelle D-9 Energie L2

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	247 (F7 _H)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L2	UINT	1 mA	0 65535	66008
4 7	Wirkenergie Bezug L2	UDINT	1 Wh	0 2147483647	62210
8 11	Wirkenergie Abgabe L2	UDINT	1 Wh	0 2147483647	62211
11 15	Blindenergie Bezug L2	UDINT	1 varh	0 2147483647	62212
16 19	Blindenergie Abgabe L2	UDINT	1 varh	0 2147483647	62213
20 23	Scheinenergie L2	UDINT	1 Vah	0 2147483647	62214
24	Skalierung Strom L2	USINT	-	0 255	-
25	Skalierung Wirkenergie Bezug L2	USINT	-	0 255	-
26	Skalierung Wirkenergie Abgabe L2	USINT	-	0 255	-
27	Skalierung Blindenergie Bezug L2	USINT	-	0 255	-
28	Skalierung Blindenergie Abgabe L2	USINT	-	0 255	-
29	Skalierung Scheinenergie L2	USINT	-	0 255	-
30	reserviert	BYTE	-	-	-
31	Leistungsfaktor L2	USINT	0,01	0 100	66020

Energie L3 (ID 246 oder F6_H)

Tabelle D- 10 Energie L3

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	246 (F6н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L3	UINT	1 mA	0 65535	66009
4 7	Wirkenergie Bezug L3	UDINT	1 Wh	0 2147483647	62310
8 11	Wirkenergie L3 Abgabe	UDINT	1 Wh	0 2147483647	62311
11 15	Blindenergie Bezug L3	UDINT	1 varh	0 2147483647	62312
16 19	Blindenergie Abgabe L3	UDINT	1 varh	0 2147483647	62313
20 23	Scheinenergie L3	UDINT	1 VAh	0 2147483647	62314
24	Skalierung Strom L3	USINT	-	0 255	-
25	Skalierung Wirkenergie Bezug L3	USINT	-	0 255	-
26	Skalierung Wirkenergie Abgabe L3	USINT	-	0 255	-
27	Skalierung Blindenergie Bezug L3	USINT	-	0 255	-
28	Skalierung Blindenergie Abgabe L3	USINT	-	0 255	-
29	Skalierung Scheinenergie L3	USINT	-	0 255	-
30	reserviert	BYTE	-	-	-
31	Leistungsfaktor L3	USINT	0,01	0 100	66021

Basisgrößen Dreiphasenmessungen (ID 245 oder F5_H)

Tabelle D- 11 Basisgrößen Dreiphasenmessungen

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	245 (F5н)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 5	Gesamt-Wirkleistung L1L2L3	REAL	1 W	-3.0 x 10 ⁹ + 3.0 x 10 ⁹	66034
6 9	Gesamt-Wirkenergie Abgabe L1L2L3	REAL	1 Wh	0.0 3.4 x 10 ³⁸	201
10 13	Gesamt-Wirkenergie Bezug L1L2L3	REAL	1 Wh	0.0 3.4 x 10 ³⁸	200
14 17	Strom L1	REAL	1 A	0.0 10000.0	7
18 21	Strom L2	REAL	1 A	0.0 10000.0	8
22 25	Strom L3	REAL	1 A	0.0 10000.0	9
26 27	Spannung UL1-N	UINT	0,01 V	0 30000	66001
28 29	Spannung UL2-N	UINT	0,01 V	0 30000	66002
30 31	Spannung UL3-N	UINT	0,01 V	0 30000	66003

Basisgrößen Phasenbezogene Messung L1 (ID 159 oder 9F_H)

Tabelle D- 12 Basisgrößen Phasenbezogene Messung L1

Byte	Belegung	Datentyp	Einheit	Wertebereich	Mess- wert- ID
0	Nutzdatenvariante	BYTE	-	159 (9FH)	-
1	Qualitätsinformation = QQ ₁ I ₃ U ₃ I ₂ U ₂ I ₁ U ₁	BYTE	Bitfolge	qq xx xx xx	-
2 3	Strom L1	UINT	1 mA	0 65535	66007
4 5	Spannung UL1-N	UINT	0,01 V	0 65535	66001
6 7	Wirkleistung L1	INT	1 W	-27648 27648	66013
8 9	Blindleistung L1	INT	1 var	-27648 27648	66016
10 11	Scheinleistung L1	INT	1 VA	-27648 27648	66010
12 15	Wirkenergie L1 Summe (Bezug - Abgabe)	UDINT	1 Wh	0 2147483647	62115
16 19	Blindenergie L1 Summe (Bezug - Abgabe)	UDINT	1 varh	0 2147483647	62116
20 23	Scheinenergie L1	UDINT	1 VAh	0 2147483647	62114
24	Skalierung Strom L1	USINT	-	0 255	-
25	Skalierung Wirkleistung L1	USINT	-	0 255	-
26	Skalierung Blindleistung L1	USINT	-	0 255	-
27	Skalierung Scheinleistung L1	USINT	-	0 255	-
28	Skalierung Wirkenergie L1 Summe (Bezug - Abgabe)	USINT	-	0 255	-
29	Skalierung Blindenergie L1 Summe (Bezug - Abgabe)	USINT	-	0 255	-
30	Skalierung Scheinenergie L1	USINT	-	0 255	-
31	Leistungsfaktor L1	USINT	0,01	0 100	66019

Messwertdatensätze

E.1 Übersicht aller Messwertdatensätze

Das Energy Meter 400VAC ST schreibt die Messwerte in mehrere Datensätze, die Sie im Anwenderprogramm azyklisch mit Hilfe der Anweisung RDREC auslesen können.

Die folgenden Tabellen zeigen den Aufbau der einzelnen Datensätze:

- Datensatz DS 142 für Basismesswerte (nur lesbar).
- Datensatz DS 143 für Energiezähler (lesbar und schreibbar).

Hinweis

- Der Summenwert der Energiezähler im 3 Phasenbetrieb ergibt sich aus den Summen der jeweiligen Einzelwerte der Phasen.
- Bezugs- und Abgabe-Energiezähler sind immer positive Werte.

E.2 Messwertdatensatz für Basismesswerte (DS 142)

Messgrößen des Moduls

Die folgende Tabelle enthält eine Übersicht aller Messgrößen, die der Datensatz 142 liefert. Beachten Sie, dass entsprechend der genutzten Anschlussart die Anzeige einiger Messgrößen nicht sinnvoll ist und das Modul nicht relevante Messwerte löscht.

Die Messwertidentifikation (Messwert-ID) ist ein Index, der auf die Übersichtstabelle zu den Messgrößen im Anhang B (Messgrößen (Seite 80)) referenziert.

Tabelle E- 1 Datensatz 142

Byte	Messgröße I		Einheit	Wertebereich	Mess wert- ID
0	Version	BYTE	-	1	-
1	reserviert		-	0	-
25	Spannung UL1-N	REAL	V	0.0 300.0	1
69	Spannung UL2-N	REAL	V	0.0 300.0	2
1013	Spannung UL3-N	REAL	V	0.0 300.0	3
1417	Spannung UL1-L2	REAL	V	0.0 600.0	4
1821	Spannung UL2-L3	REAL	V	0.0 600.0	5
2225	Spannung UL3-L1	REAL	V	0.0 600.0	6
2629	Strom L1	REAL	Α	0.0 10000.0	7
3033	Strom L2	REAL	Α	0.0 10000.0	8
3437	Strom L3	REAL	Α	0.0 10000.0	9
3841	Leistungsfaktor L1	REAL	-	0.0 1.0	19
4245	Leistungsfaktor L2	REAL	-	0.0 1.0	20
4649	Leistungsfaktor L3	REAL	-	0.0 1.0	21
5053	Gesamt-Leistungsfaktor L1L2L3	REAL	-	0.0 1.0	37
5457	Frequenz	REAL	1 Hz	45.0 65.0	30
5861	Amplitudenunsymmetrie bei Spannung	REAL	%	0 100	38
6265	Amplitudenunsymmetrie bei Strom	REAL	%	0 100	39
6669	Scheinleistung L1	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹	10
7073	Scheinleistung L2	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹	11
7477	Scheinleistung L3	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹	12
7881	Gesamt-Scheinleistung L1L2L3	REAL	VA	-3.0 x 10 ⁹ +3.0 x 10 ⁹	36
8285	Blindleistung L1		var	-3.0 x 10 ⁹ +3.0 x 10 ⁹	16
8689	Blindleistung L2		var	-3.0 x 10 ⁹ +3.0 x 10 ⁹	17
9093	Blindleistung L3		var	-3.0 x 10 ⁹ +3.0 x 10 ⁹	18
9497	Gesamt-Blindleistung L1L2L3	REAL	var	-3.0 x 10 ⁹ +3.0 x 10 ⁹	35
98101	Wirkleistung L1	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹	13
102105	Wirkleistung L2	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹	14
106109	Wirkleistung L3	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹	15

E.2 Messwertdatensatz für Basismesswerte (DS 142)

Byte	Messgröße	Datentyp	Einheit	Wertebereich	Mess wert- ID
110113	Gesamt-Wirkleistung L1L2L3	REAL	W	-3.0 x 10 ⁹ +3.0 x 10 ⁹	34
114117	Phasenwinkel L1	REAL	٥	0.0 360.0	61178
118121	Phasenwinkel L2	REAL	۰	0.0 360.0	61198
122125	Phasenwinkel L3 REAL ° 0.0 360.0				61218
126129	Gesamt-Scheinenergie L1L2L3	cheinenergie L1L2L3 REAL VAh 0.0 3.4 x 10 ³⁸			204
130133	Gesamt-Blindenergie L1L2L3	t-Blindenergie L1L2L3 REAL varh -3.4 x 10 ³⁸ +3.4 x 10		-3.4 x 10 ³⁸ +3.4 x 10 ³⁸	206
134137	Gesamt-Wirkenergie L1L2L3	REAL	Wh	-3.4 x 10 ³⁸ +3.4 x 10 ³⁸	205
138141	Gesamt-Blindenergie Bezug L1L2L3	REAL	varh	0.0 3.4 x 10 ³⁸	202
142145	Gesamt-Blindenergie Abgabe L1L2L3	REAL	varh	0.0 3.4 x 10 ³⁸	203
146149	Gesamt-Wirkenergie Bezug L1L2L3	REAL	Wh	0.0 3.4 x 10 ³⁸	200
150153	Gesamt-Wirkenergie Abgabe L1L2L3	REAL	Wh	0.0 3.4 x 10 ³⁸	201
154161	Gesamt-Scheinenergie L1L2L3	LREAL	VAh	0.0 1.8 x 10 ³⁰⁸	214
162169	Gesamt-Blindenergie L1L2L3	LREAL	varh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸	216
170177	Gesamt-Wirkenergie L1L2L3	LREAL	Wh	-1.8 x 10 ³⁰⁸ +1.8 x 10 ³⁰⁸	215
178185	Gesamt-Blindenergie Bezug L1L2L3	LREAL	varh	0.0 1.8 x 10 ³⁰⁸	212
186193	Gesamt-Blindenergie Abgabe L1L2L3	LREAL	varh	0.0 1.8 x 10 ³⁰⁸	213
194201	Gesamt-Wirkenergie Bezug L1L2L3	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸	210
202209	Gesamt-Wirkenergie Abgabe L1L2L3	LREAL	Wh	0.0 1.8 x 10 ³⁰⁸	211

Vorgehensweise

Der Datensatz 142 befindet sich auf dem AI Energy Meter 400VAC ST. Mit dem SFB "RDREC" kann der Datensatz aus dem Modul gelesen werden. Dieser Systemfunktionsbaustein ist in der STEP 7 Bibliothek hinterlegt.

Messwerte in STEP 7 ab V5.5

Messwerte werden in STEP 7 ab V5.5 dann als negative Werte dargestellt, wenn der Wertebereich des Integerformats (32767 dez) überschritten wird. Das ist kein Fehler im Messwert. Abhilfe: Hexadezimal-Darstellung wählen.

Umwandlung von 64-Bit-Gleitkommazahlen

Wenn Sie in Ihrem Automatisierungssystem 64-Bit-Gleitkommazahlen nicht verarbeiten können, dann empfehlen wir eine Umwandlung in eine 32-Bit-Gleitkommazahl. Beachten Sie, dass es durch die Konvertierung zu Genauigkeitsverlusten kommen kann. Eine Beschreibung zur Umwandlung der 64-Bit-Gleitkommazahl (Datentyp LREAL) in eine 32-Bit-Gleitkommazahl (Datentyp REAL) finden Sie im Internet (http://support.automation.siemens.com/WW/view/de/56600676).

E.3 Aufbau für Energiezähler (DS 143)

Energiezähler-Datensatz 143 für verschiedene Aktionen

Der Energiezähler-Datensatz 143 beinhaltet alle auf der Baugruppe verfügbaren Energiezähler phasengranular. Der Datensatz kann für verschiedene Aktionen genutzt werden:

- Rücksetzen der Energiezähler auf anwenderspezifischen Wert (z.B. "0")
- Auslesen der aktuellen Werte der Energiezähler

Energiezähler-Datensatz 143

Tabelle E- 2 Energiezähler-Datensatz 143

Byte	Messgröße	Datentyp	Einheit	Wertebereich	Mess wert- ID
0	Version	BYTE	-	1	-
1	reserviert	BYTE	-	0	-
2	Steuerbyte 1 - L1	BYTE	Bitfolge	-	-
3	Steuerbyte 2 - L1	BYTE	Bitfolge		
4	Steuerbyte 1 - L2	BYTE	Bitfolge		
5	Steuerbyte 2 - L2	BYTE	Bitfolge		
6	Steuerbyte 1 - L3	BYTE	Bitfolge		
7	Steuerbyte 2 - L3	BYTE	Bitfolge		
815	Wirkenergie Bezug (Startwert) L1	LREAL	Wh		61180
1623	Wirkenergie Abgabe (Startwert) L1	LREAL	Wh		61181
2431	Blindenergie Bezug (Startwert) L1	LREAL	varh		61182
3239	Blindenergie Abgabe (Startwert) L1	LREAL	varh		61183
4047	Scheinenergie (Startwert) L1	LREAL	VAh		61184
4855	Wirkenergie Bezug (Startwert) L2	LREAL	Wh		61200
5663	Wirkenergie Abgabe (Startwert) L2	LREAL	Wh		61201
6461	Blindenergie Bezug (Startwert) L2	LREAL	varh		61202
7279	Blindenergie Abgabe (Startwert) L2	LREAL	varh	Beim Lesen:	61203
8087	Scheinenergie (Startwert) L2	LREAL	VAh	0.01.8 x 10 ³⁰⁸	61204
8895	Wirkenergie Bezug (Startwert) L3	LREAL	Wh		61220
96103	Wirkenergie Abgabe (Startwert) L3	LREAL	Wh	Beim Schreiben:	61221
104111	Blindenergie Bezug (Startwert) L3	LREAL	varh	0.03.4 x 10 ¹²	61222
112119	Blindenergie Abgabe (Startwert) L3	LREAL	varh		61223
120127	Scheinenergie (Startwert) L3	LREAL	VAh		61224

Fehler bei Übertragung des Datensatzes

Das Modul überprüft immer sämtliche Werte des übertragenenen Datensatzes. Nur wenn sämtliche Werte ohne Fehler übertragen wurden, übernimmt das Modul die Werte aus dem Datensatz.

Die Anweisung WRREC für das Schreiben von Datensätzen liefert bei Fehlern im Parameter STATUS entsprechende Fehlercodes zurück.

Die folgende Tabelle zeigt die modulspezifischen Fehlercodes und deren Bedeutung für den Messwertdatensatz 143.

Fehlercode im Parameter STATUS (hexadezimal)			STATUS	Bedeutung	Abhilfe
Byte 0	Byte 1	Byte 2	Byte 3		
DF	80	В0	00	Nummer des Datensatzes unbekannt	Gültige Nummer für Datensatz eintragen.
DF	80	B1	00	Länge des Datensatzes nicht korrekt	Zulässigen Wert für Datensatzlänge eintragen.
DF	80	B2	00	Steckplatz ungültig oder nicht erreichbar.	Station überprüfen, ob Modul gesteckt oder gezogen ist.
					Zugewiesene Werte für Parameter der Anweisung WRREC überprüfen.
DF	80	E1	01	Reservierte Bits sind nicht 0.	Byte 27 prüfen und reservierte Bits wieder auf 0 setzen.
DF	80	E1	39	Falsche Version eingetragen.	Byte 0 prüfen. Gültige Version eintragen.
DF	80	E1	ЗА	Falsche Datensatzlänge eingetragen.	Parameter in der Anweisung WRREC prüfen. Gültige Länge eintragen.
DF	80	E1	3C	Mindestens ein Startwert ist ungültig.	Byte 8103 und Byte 158169 prüfen. Startwerte dürfen nicht negativ sein.
DF	80	E1	3D	Mindestens ein Startwert ist zu groß	Byte 8103 und Byte 158169 prüfen. Wertebereiche für Startwerte beachten.

Tipps und Tricks

F.1 Tipps und Tricks

FAQ und Applikationsbeispiele

Zum Al Energy Meter gibt es mehrere FAQs und Applikationsbeispiele, die Sie bei der Arbeit unterstützen.

Energiedaten messen und visualisieren

Dieses Applikationbeispiel finden Sie im Internet (http://support.automation.siemens.com/WW/view/de/86299299)

IT-Netz

In IT-Netzen muss, aufgrund des fehlenden Neutralleiters, ein künstlicher N-Leiter (z.B. durch einen 1:1 Spannungswandler) erzeugt werden. Damit können Sie das Modul einsetzen.