BECKHOFF New Automation Technology

Dokumentation | DE

EK112x, EK15xx

EtherCAT-Abzweige

Inhaltsverzeichnis

1	Vorw	wort	5
	1.1	Übersicht EtherCAT Abzweige	5
	1.2	Hinweise zur Dokumentation	6
	1.3	Sicherheitshinweise	7
	1.4	Wegweiser durch die Dokumentation	8
	1.5	Ausgabestände der Dokumentation	9
	1.6	Versionsidentifikation von EtherCAT-Geräten	10
		1.6.1 Allgemeine Hinweise zur Kennzeichnung	10
		1.6.2 Versionsidentifikation von EK-Kopplern	11
		1.6.3 Beckhoff Identification Code (BIC)	12
		1.6.4 Elektronischer Zugriff auf den BIC (eBIC)	14
2	Prod	duktübersicht	16
	2.1	Abzweige mit RJ45-Anschluss	
		2.1.1 EK1122, EK1122-0080	
		2.1.2 EK1121-0010	
	2.2	Abzweige mit M8-Anschluss	
		2.2.1 EK1122-0008	
	2.3	Abzweige mit LWL-Anschluss	
		2.3.1 EK1521	
		2.3.2 EK1521-0010	
	2.4	Abzweige mit POF-Anschluss	
		2.4.1 EK1561	
3	Inhot	etriebnahme/Anwendungshinweise	
5	3.1	Hinweise für Abzweig mit RJ45-Anschluss	
	0.1	3.1.1 EK1121-0010 - Einstellungen und Portzuordnung	
		3.1.2 EK1122 - Einstellungen und Portzuordnung	
	3.2	Hinweise für Abzweig mit M8-Anschluss	
	0.2	3.2.1 EK1122-0008 - Einstellungen und Portzuordnung	
	3.3	Hinweise für Abzweig mit LWL-Anschluss	
	0.0	3.3.1 Grundlagen der LWL-Technologie	
		3.3.2 EK1521-00x0 - Einstellungen und Portzuordnung	
		3.3.3 Hinweise zum verwendbaren LWL-Kabel	
		3.3.4 Einsatz mit dem EK1521 und EK1521-0010	
	3.4	Hinweise für Abzweig mit POF-Anschluss	
	J. 4	3.4.1 EK1561 - Einstellungen und Portzuordnung	
		3.4.2 Hinweise zum verwendbaren POF-Kabel	
		3.4.3 Einsatz mit dem EK1561	
	3.5	Hinweise zur Konfektionierung von POF-Kabeln mit dem Steckerset ZS1090-0008	
4		lerbehandlung und Diagnose	
	4.1	Diagnose-LEDs EK1121-0010, EK1122, EK1122-0008	
	4.2	Diagnose-LEDs EK1521, EK1521-0010	
	4.3	Diagnose-LEDs EK1561	57
5	Mont	ntage und Verdrahtung	58

Version: 3.9.0

	5.1	Hinweise zum ESD-Schutz	58
	5.2	Explosionsschutz	59
		5.2.1 ATEX - Besondere Bedingungen (erweiterter Temperaturbereich)	59
		5.2.2 IECEx - Besondere Bedingungen	61
		5.2.3 Weiterführende Dokumentation zu ATEX und IECEx	62
		5.2.4 cFMus - Besondere Bedingungen	63
		5.2.5 Weiterführende Dokumentation zu cFMus	64
	5.3	UL-Hinweise	64
	5.4	Tragschienenmontage	65
	5.5	Montage und Demontage - Frontentriegelung oben	67
	5.6	Einbaulagen	69
	5.7	Anschlusstechnik	71
	5.8	Verdrahtung	72
	5.9	EtherCAT-Verkabelung - Drahtgebunden	74
	5.10	M8-Anschluss - Verkabelung	75
	5.11	Anzugsdrehmoment für die Steckverbinder	76
	5.12	Hinweis zur Spannungsversorgung	77
	5.13	Speisung, Potenzialgruppen	
	5.14	Positionierung von passiven Klemmen	80
	5.15	Entsorgung	81
6	Grun	ıdlagen der Kommunikation	82
	6.1	EtherCAT-Grundlagen	
	6.2	Funktionsgrundlagen EtherCAT-Abzweige	
	6.3	EtherCAT State Machine	
	6.4	CoE-Interface: Hinweis	91
	6.5	EKxxxx - Optionale Distributed Clocks Unterstützung	
7	Anha	ang	94
	7.1	Sicherheitshinweis und Verhaltensregeln zur Laser-Klasse 1	
	7.2	Firmware Kompatibilität	
	7.3	Firmware Update EL/ES/ELM/EM/EP/EPP/ERPxxxx	
		7.3.1 Gerätebeschreibung ESI-File/XML	
		7.3.2 Erläuterungen zur Firmware	
		7.3.3 Update Controller-Firmware *.efw	
		7.3.4 FPGA-Firmware *.rbf	
		7.3.5 Gleichzeitiges Update mehrerer EtherCAT-Geräte	
	7.4	Support und Service	
	/T	Cupport and Conviction	100

1 Vorwort

1.1 Übersicht EtherCAT Abzweige

Anschluss RJ45		
EK1121-0010 [▶ 22] 1 Port EtherCAT-Abzweig, Extended Distance		
<u>EK1122</u> [▶ 16] 2 Port EtherCAT-Abzweig		
EK1122-0080 [▶ 16] 2 Port EtherCAT-Abzweig, Fast-Hot-Connect		

Anschluss M8	
EK1122-0008 [▶ 26]	2 Port EtherCAT-Abzweig

Anschluss LWL	
EK1521 [▶ 28]	1 Port EtherCAT-Multimode-LWL-Abzweig
EK1521-0010 [▶30]	1 Port EtherCAT-Singlemode-LWL-Abzweig

Anschluss POF	
EK1561 [▶ 32]	1 Port EtherCAT-POF-Abzweig

1.2 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Fremdmarken

In dieser Dokumentation werden Marken und Wortmarken Dritter verwendet. Die zugehörigen Markenvermerke befinden sich unter: https://www.beckhoff.com/trademarks

1.3 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

⚠ VORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.4 Wegweiser durch die Dokumentation

HINWEIS

Weitere Bestandteile der Dokumentation

Diese Dokumentation beschreibt gerätespezifische Inhalte. Sie ist Bestandteil des modular aufgebauten Dokumentationskonzepts für Beckhoff I/O-Komponenten. Für den Einsatz und sicheren Betrieb des in dieser Dokumentation beschriebenen Gerätes / der in dieser Dokumentation beschriebenen Geräte werden zusätzliche, produktübergreifende Beschreibungen benötigt, die der folgenden Tabelle zu entnehmen sind.

Titel	Beschreibung
EtherCAT System-Dokumentation (PDF)	Systemübersicht
	EtherCAT-Grundlagen
	Kabel-Redundanz
	Hot Connect
	Konfiguration von EtherCAT-Geräten
Explosionsschutz für Klemmensysteme (PDF)	Hinweise zum Einsatz der Beckhoff Klemmensysteme in explosionsgefährdeten Bereichen gemäß ATEX und IECEx
Control Drawing I/O, CX, CPX (PDF)	Anschlussbilder und Ex-Kennzeichnungen (gemäß cFMus)
Infrastruktur für EtherCAT/Ethernet (PDF)	Technische Empfehlungen und Hinweise zur Auslegung, Ausfertigung und Prüfung
Software-Deklarationen I/O (PDF)	Open-Source-Software-Deklarationen für Beckhoff-I/O-Komponenten

Die Dokumentationen können auf der Beckhoff-Homepage (<u>www.beckhoff.com</u>) eingesehen und heruntergeladen werden über:

- den Bereich "Dokumentation und Downloads" der jeweiligen Produktseite,
- · den Downloadfinder,
- das Beckhoff Information System.

Sollten Sie Vorschläge oder Anregungen zu unserer Dokumentation haben, schicken Sie uns bitte unter Angabe von Dokumentationstitel und Versionsnummer eine E-Mail an: dokumentation@beckhoff.com

1.5 Ausgabestände der Dokumentation

Version	Änderungen
3.9.0	Update Kapitel "Technische Daten"
	Kapitel "Grundlagen der LWL-Technologie" aktualisiert
	Struktur-Update
3.8	Kapitel "Empfohlene Tragschiene" entfernt
	Update Kapitel "Technische Daten"
3.7	Update Kapitel "Technische Daten"
	Struktur-Update
3.6	Update Kapitel "Technische Daten"
	Update Kapitel "Montage und Verdrahtung"
	Struktur-Update
3.5	Neue Titelseite
	EK1121-0010 ergänzt
	Update Kapitel "Technische Daten"
	Update Kapitel "Anwendungshinweise"
	Update Kapitel "UL-Hinweise"
	Struktur-Update
3.4	Update Kapitel "Technische Daten"
	Struktur-Update
3.3	Update Kapitel "Hinweise zur Dokumentation"
	Update Kapitel "Technische Daten"
	Hinweis zum ESD-Schutz eingefügt
	Kapitel "ATEX - Besondere Bedingungen" ausgetauscht gegen Kapitel "ATEX - Besondere Bedingungen (erweiterter Temperaturbereich)"
3.2	Aktualisierung im Kapitel "Technische Daten"
3.1	Aktualisierung im Kapitel "Funktionsgrundlagen EtherCAT-Abzweige"
3.0	Ergänzung von EK1122-0008 (EtherCAT Koppler, mit M8-Buchsen);
	Migration
2.4	Kapitel "Montage und Verdrahtung" aktualisiert
	Kapitel "Technische Daten" aktualisiert
	Struktur-Update
2.3	Technische Daten aktualisiert
2.2	Technische Daten aktualisiert
2.1	Ergänzung Kapitel "Optionale DC-Unterstützung"
0.1 - 2.0	*archiviert*

1.6 Versionsidentifikation von EtherCAT-Geräten

1.6.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016		3314	0000	0016
	12 mm, nicht steckbare Anschlussebene	4-kanalige Thermoelementklemme	Grundtyp	
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	12 mm, steckbare Anschlussebene	2-kanalige Spannungsmessung	hochpräzise Version	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		8 Port FastEthernet Switch	Grundtyp	

Hinweise

- Die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die Revision -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.
 - Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 - Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht. Die Revision wird seit Januar 2014 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL2872 mit Revision 0022 und Seriennummer 01200815".
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

Versionsidentifikation von EK-Kopplern 1.6.2

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder mit einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module innerhalb einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr

FF - Firmware-Stand HH - Hardware-Stand Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12

06 - Produktionsjahr 2006

3A - Firmware-Stand 3A

02 - Hardware-Stand 02

Abb. 1: EK1101 EtherCAT Koppler mit Revision 0815 und Seriennummer 41130206

1.6.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 2: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- · direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Datenidentifi- kator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff-Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P 072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTN k4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1K EL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q 1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P 401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z. B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S 678294
7	Variante	Optional: Produktvarianten- Nummer auf Basis von Standardprodukten	30P	12	30P F971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 3: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumenation können keine Ansprüche auf Änderung geltend gemacht werden.

1.6.4 Elektronischer Zugriff auf den BIC (eBIC)

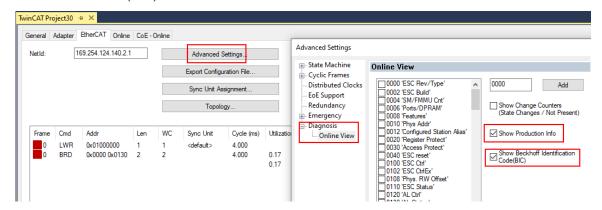
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff-Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

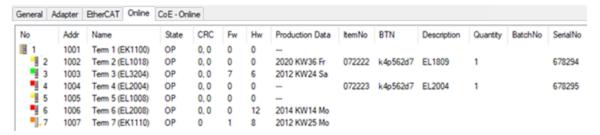
Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt angesprochen werden kann.

K-Bus Geräte (IP20, IP67)

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, das die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).


In das ESI-EEPROM wird durch Beckhoff auch die eBIC geschrieben. Die Einführung des eBIC in die Beckhoff-IO-Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT-Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen:
 - Ab TwinCAT 3.1 Build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter
 EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC bereit.

• Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:

Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein

Inc	dex	Name	Rags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
•	1011:0	Restore default parameters	RO	>1<		
	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. Build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 Build 4024.24 in der *Tc2 Utilities* zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den BIC sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST_SplittedBIC als Rückgabewert
 - BIC TO BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Zum technischen Hintergrund:
 Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben, demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010 abgelegt. Durch die ID 03 ist für alle EtherCAT-Master vorgegeben, dass sie im Updatefall diese Daten nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen.
 Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca. 50..200 Byte im EEPROM.
- Sonderfälle
 - Bei einer hierarchischen Anordnung mehrerer ESC (EtherCAT Slave Controller) in einem Gerät trägt lediglich der oberste ESC die eBIC-Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC-Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC dieses ESC, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

PROFIBUS-, PROFINET-, DeviceNet-Geräte usw.

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

2 Produktübersicht

2.1 Abzweige mit RJ45-Anschluss

2.1.1 EK1122, EK1122-0080

2.1.1.1 Einführung

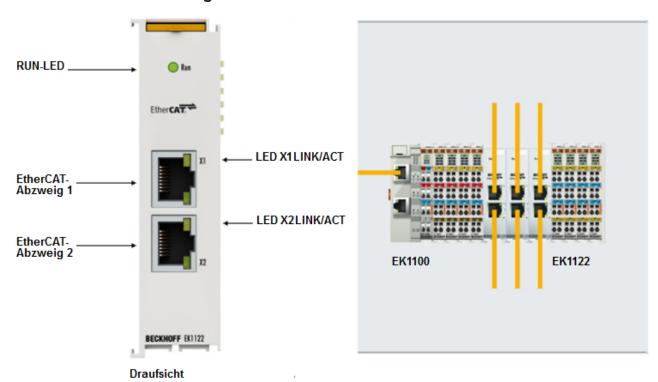


Abb. 4: EK1122-xxxx

EK1122-0000

Der 2-Port-EtherCAT-Abzweig ermöglicht es, EtherCAT-Sterntopologien aufzubauen. Durch das Verwenden mehrerer EK1122 in einer Station lässt sich ein modularer EtherCAT-Sternverteiler realisieren. An den Abzweig-Ports können einzelne Geräte oder auch ganze EtherCAT-Stränge angeschlossen werden. Der Anschluss der EtherCAT-Abzweige erfolgt über RJ-45-Buchsen, an denen direkt Link- und Activity-Status angezeigt werden. Die Run-LED zeigt den Status des EK1122 an. Mit TwinCAT und anderen geeigneten EtherCAT-Mastern unterstützt der EK1122 auch das An- und Abkoppeln von EtherCAT-Strängen im laufenden Betrieb (Hot-Connect).

EK1122-0080

Hot-Connect ist ein EtherCAT-Feature für wechselnde Topologien durch direktes An- oder Abkoppeln während der Anlagenbetriebszeit. Angekoppelte EtherCAT-Komponenten werden zwar nach dem Anschluss schnell in die Datenübertragung aufgenommen, die Fast-Hot-Connect-Technologie verkürzt diese Anbindungszeit jedoch nochmals deutlich, wodurch noch schnellere Werkzeugwechselvorgänge möglich sind. Fast-Hot-Connect-Ports dürfen dabei nur untereinander kombiniert werden, daher sind sie besonders gekennzeichnet.

Der EtherCAT-Abzweig EK1122-0080 mit Fast-Hot-Connect wird durch den EtherCAT-Koppler EK1101-0080 mit Fast-Hot-Connect ergänzt.

Fast-Hot-Connect Ports des EK1122-0080

Im Gegensatz zum EK1122 sind die RJ45-Anschlüsse der FHC-Ports des EK1122-0080 sind mit einer gestrichelten Umrandung markiert (s. folgende Abb.) Erläuterungen dazu siehe im Kapitel EtherCAT Fast-Hot-Connect [19].

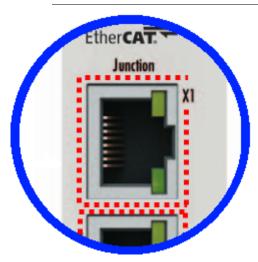


Abb. 5: Fast-Hot-Connect Ports des EK1122-0080

Anschluss

Klemmstelle	Beschreibung
Bezeichnung	
X1/X2	RJ45-Anschluss für EtherCAT Netze (100BASE-TX-Ethernet-Signaldarstellung)

Quick-Links

- EtherCAT Funktionsgrundlagen
- <u>Hinweise zu Fast-Hot-Connect</u> [▶ 19]
- Anwendungshinweise [34]
- Diagnose LEDs [> 55]

2.1.1.2 Technische Daten

Technische Daten	EK1122	EK1122-0080
Aufgabe im EtherCAT-System	Ankopplung von EtherCAT-Abzweigen	Ankopplung von EtherCAT-Abzweigen
		Fast-Hot-Connect Technologie [▶ 19]
Übertragungsmedium	Ethernet/EtherCAT-Kabel (min. Kat. 5), geschirmt	
Leitungslänge zwischen zwei Buskopplern	max. 100 m (100BASE-TX)	
Protokolle	EtherCAT Device Protokoll	
Übertragungsraten	100 MBit/s	
Busanschluss	2 x RJ45	
Durchlaufverzögerung	ca. 1 µs	
Konfiguration	keine Adress- und Konfigurationseinstellung erforderlich	

Allgemeine Daten	EK1122	EK1122-0080	
Spannungsversorgung	aus E-Bus		
Stromaufnahme	typ. 220 mA	typ. 220 mA	
Abmessungen (B x H x T)	ca. 26 mm x 100 mm x 52 mm (angereiht: 23 mm)		
Gewicht	ca. 70 g		
zulässiger Umgebungstemperaturbereich im Betrieb	-25°C +60°C (erweiterter Temperaturbere	ich)	
zulässiger Umgebungstemperaturbereich bei Lagerung	-40°C +85°C		
zulässige relative Luftfeuchtigkeit	95 %, keine Betauung		
Montage [▶ 58]	auf 35 mm Tragschiene nach EN 60715		
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27		
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4		
Schutzart	IP20		
Einbaulage	beliebig		
Zulassungen / Kennzeichnungen*)	CE, UKCA, EAC, <u>cULus [▶ 64]</u> , <u>ATEX [▶ 59]</u> , <u>IECEX [▶ 61]</u> , <u>cFMus [▶ 63]</u>	CE, UKCA, EAC, <u>cULus [▶ 64]</u> . <u>ATEX [▶ 59], IECEX [▶ 61]</u>	

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

EK1122:

Ex-Kennzeichnungen

Standard	Kennzeichnung
ATEX	II 3 G Ex nA IIC T4 Gc
IECEx	Ex nA IIC T4 Gc
cFMus	Class I, Division 2, Groups A, B, C, D Class I, Zone 2, AEx/Ex ec IIC T4 Gc

EK1122-0080:

Ex-Kennzeichnungen

Standard	Kennzeichnung
ATEX	II 3 G Ex nA IIC T4 Gc
IECEx	Ex nA IIC T4 Gc

2.1.1.3 Hinweise zur EtherCAT Fast-Hot-Connect Technologie

Mit EtherCAT-Komponenten, die Fast-Hot-Connect unterstützen, ist ein deutlich schnellerer Feldbus-Hochlauf nach Verbindungsherstellung möglich. Die Hochlaufzeit ist im Detail abhängig vom Umfang der Geräte, Topologie und aktivierten Distributed Clocks. Benötigt ein normaler Verbindungs- und Kommunikationsaufbau mehrere Sekunden, ist mit FHC-Komponenten < 1 Sekunde möglich.

Eigenschaften und Systemverhalten

- Fast-Hot-Connect wird ab TwinCAT 2.11R3 build 2221 unterstützt
- · Fast-Hot-Connect-Ports sind besonders gekennzeichnet.

Abb. 6: Kennzeichnung FHC-Port am EK1122-0080 bzw. EK1101-0080

 an Fast-Hot-Connect-Ports dürfen keine Standard-EtherCAT-Geräte angeschlossen werden. Dies ist durch applikationsseitige Maßnahmen sicherzustellen, was durch die in derartigen Applikationen i. d. R. maschinell durchgeführten Topologiewechsel einfach umzusetzen ist.

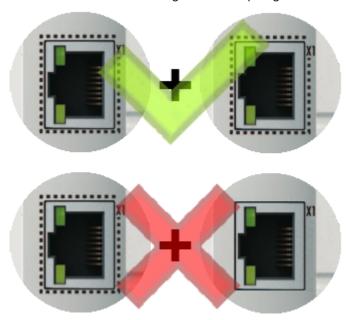


Abb. 7: Empfehlung Kombination Ethernet Ports

- Wurden dennoch entsprechende Ports verbunden, ist ggf. ein PowerReset der beteiligten Geräte (Abzweigklemme und Koppler/Box) erforderlich.
- Es findet bei Fast-Hot-Connect-Geräten ein beschleunigter Ethernet-Verbindungsaufbau gegenüber der normalen FastEthernet-Verbindung statt.
 Wird zusätzlich noch auf den Einsatz von Distributed-Clocks-Funktionen in der gesamten Topologie

verzichtet, entfällt auch die Resynchronisierungszeit der Komponenten. Dann sind Gruppenhochlaufzeiten von < 1 Sekunde möglich, vom Stecken der Ethernet-Verbindung bis zum OP-State

im TwinCAT ADS Logger wird eine falsche Port-Zuordnung detektiert

Message

'Term 17 (EK1122-0080)' detected invalid hot connect group at port 3

'Term 21 (EK1122)' detected invalid hot connect group at port 3. Only Fast-Hotconnect slaves are allowed at this port.

Abb. 8: Detektion falsche Portzuordnung TwinCAT-Logger

Konfiguration

Die Konfiguration von Fast-Hot-Connect-Gruppen im TwinCAT System Manager erfolgt genauso wie Hot-Connect-Gruppen unter Angabe der zugehörigen Gruppen-ID.

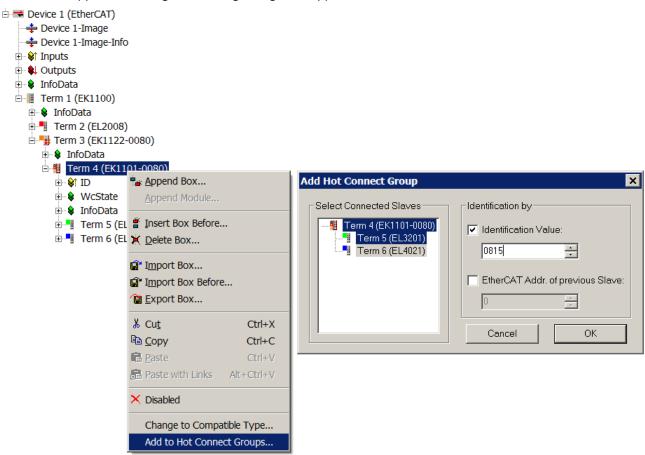


Abb. 9: Konfiguration Fast-HotConnect Gruppe

Im TwinCAT-System Manager sind entsprechende FastHotConnect-Ports rot gekennzeichnet.

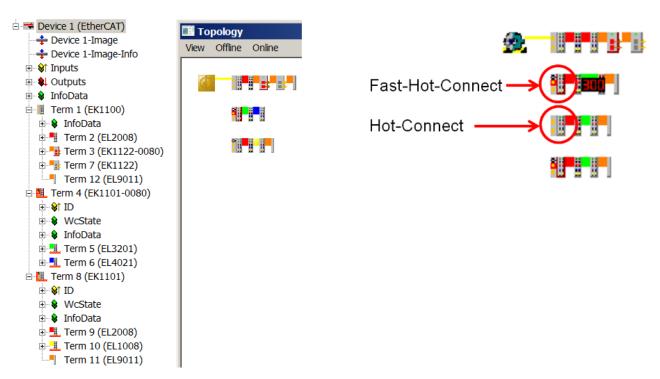


Abb. 10: Kennzeichnung im TwinCAT System Manager

Eine Konfiguration von FHC-Gruppen ist nur möglich, wenn mindestens 1 entsprechender Abzweig z. B. EK1122-0080 vorhanden ist.

Distributed Clocks

Wenn keine Distributed-Clocks-Funktionen genutzt werden, ist dies in den Master-Einstellungen durch ein fehlenden "DC in use" sichtbar:

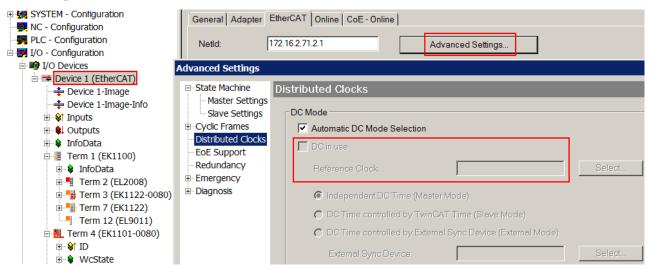


Abb. 11: DC-Master-Einstellung

Diese Einstellung wird vom System Manager automatisch gewählt, wenn keine EtherCAT-Slaves in der Konfiguration enthalten sind, bei denen Distributed Clocks aktiviert ist. Es sollte hier nicht durch den Anwender "DC in use" willkürlich deaktiviert werden, weil sonst diese Teilnehmer nicht mehr funktionieren.

2.1.2 EK1121-0010

2.1.2.1 Einführung

Abb. 12: EK1121-0010

EK1121-0010

Der 1-Port-EtherCAT-Extended-Distance-Abzweig EK1121-0010 ermöglicht es, in Verbindung mit einem EtherCAT-Extended-Distance-Gerät z. B. EK1101-0010, Entfernungen von bis zu 300 m zu überbrücken. Der EK1121-0010 kann in einem EtherCAT-Strang an beliebiger Stelle zwischen den EtherCAT-Klemmen (ELxxxx) eingesetzt werden. Der Anschluss des EtherCAT-Abzweigs erfolgt über eine RJ45-Buchse. Neben der Run-LED wird der Link- und Activity-Status direkt am Port angezeigt.

Anschluss

Klemmstelle	Beschreibung
Bezeichnung	
X1	RJ45-Anschluss für EtherCAT Netze (100BASE-TX-Ethernet-Signaldarstellung)

Quick-Links

- EtherCAT Funktionsgrundlagen
- <u>Anwendungshinweise</u> [▶ <u>34</u>]
- <u>Diagnose LEDs [▶ 55]</u>

2.1.2.2 Technische Daten

Technische Daten	EK1121-0010
Aufgabe im EtherCAT-System	Ankopplung von 100BASE-TX-EtherCAT-Netzen
Übertragungsmedium	Ethernet/EtherCAT-Kabel (Kupfer, min. Kat. 5, 4-adrig, AWG22), geschirmt
Leitungslänge zwischen zwei Buskopplern	max. 300 m
Protokolle	EtherCAT
Übertragungsraten	100 MBit/s
Konfiguration	keine Adress- und Konfigurationseinstellung erforderlich
Busanschluss	1 x RJ45
Durchlaufverzögerung	ca. 1 µs
Spannungsversorgung	aus E-Bus
Stromaufnahme	typ. 160 mA

Allgemeine Daten	EK1121-0010
Abmessungen (B x H x T)	ca. 26 mm x 100 mm x 52 mm (angereiht: 23 mm)
Gewicht	ca. 65 g
zulässiger Umgebungstemperaturbereich im Betrieb	0°C +55°C
zulässiger Umgebungstemperaturbereich bei Lagerung	-25°C +85°C
zulässige relative Luftfeuchtigkeit	95 %, keine Betauung
Montage [▶ 58]	auf 35 mm Tragschiene nach EN 60715
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	beliebig
Zulassungen / Kennzeichnungen*)	CE, UKCA, EAC, <u>cULus</u> [▶ <u>64</u>]

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

2.1.2.3 Hinweise zum Extended-Distance-Anschluss

Mit EtherCAT Komponenten, die Extended-Distance unterstützen, können Entfernungen bis zu 300 m (bei Verbindungen zwischen zwei Extended-Distance-Komponenten) realisiert werden. Diese Komponenten sind sowohl in den Technischen Daten als auch an den jeweiligen RJ45-Buchsen der Komponente selbst mit "extended distance" gekennzeichnet. Im TwinCAT System Manager ist die Kennzeichnung "extended distance" Bestandteil der Typen-Bezeichnung (Registerreiter "Allgemein", "Type").

Topologien Extended-Distance-Komponenten, Entfernungen bis zu 300 m

Entfernungen bis zu 300 m können zwischen zwei Extended-Distance-Komponenten erreicht werden. Mögliche Topologien sind in der folgenden Abbildung dargestellt.

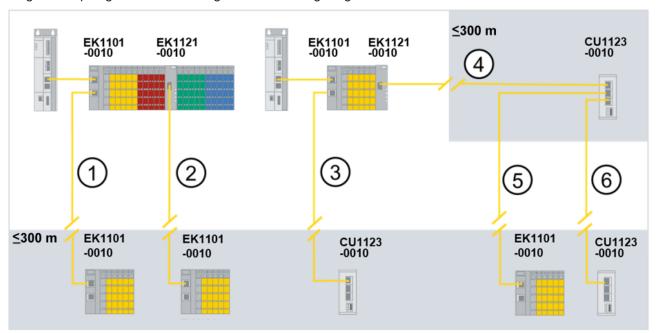


Abb. 13: Topologien mit Extended-Distance-Komponenten, Entfernung bis zu 300 m

Topologien mit Extended-Distance-Komponenten, Entfernung bis zu 300 m			
Nr. in Abbildung oben	1. Komponente	2. Komponente	
1	EK1101-0010	EK1101-0010	
2	EK1121-0010	EK1101-0010	
3	EK1101-0010	CU1123-0010	
4	EK1121-0010	CU1123-0010	
5	CU1123-0010	EK1101-0010	
6	CU1123-0010	CU1123-0010	

Unzulässige Topologien Extended-Distance-Komponenten

Der Abzweig EK1121-0010 kann nicht als 2. Komponente eingesetzt werden, da der EtherCAT-Port ein Ausgangsport ist. In der folgenden Abbildung werden Topologien mit Extended-Distance-Komponenten dargestellt, die nicht zulässig sind.

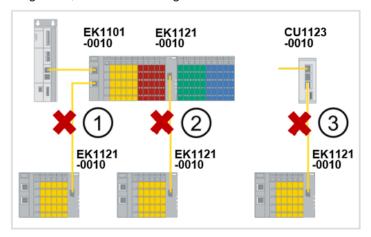


Abb. 14: Unzulässige Topologien mit Extended-Distance-Komponenten

Unzulässige Topologien mit Extended-Distance-Komponenten		
Nr. in Abbildung oben	1. Komponente	2. Komponente
1	EK1101-0010	EK1121-0010
2	EK1121-0010	EK1121-0010
3	CU1123-0010	EK1101-0010

Topologien Extended-Distance- und Standardkomponenten, Entfernungen bis zu 100 m

Wenn nur eine Extended-Distance-Komponente verwendet wird, z. B. eine Verbindung zwischen einem Standard EtherCAT-Koppler (EK1100) und einem EtherCAT-Koppler mit Extended-Distance (EK1101-0010), sind herkömmliche Entfernungen bis zu 100 m möglich. Die Standardkomponenten sind in der folgenden Abbildung mit "*" gekennzeichnet. Die Erkennung von Standardkomponenten erfolgt automatisch. Es ist keine Parametrierung der EtherCAT-Ports notwendig. Beispiele für mögliche Topologien sind in der folgenden Abbildung dargestellt.

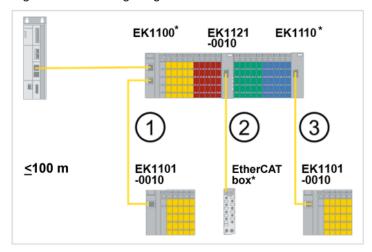
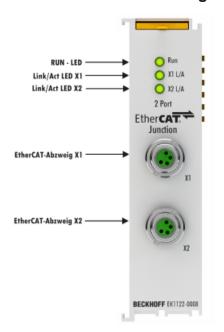


Abb. 15: Topologien mit Extended-Distance- und Standardkomponenten, Entfernung bis zu 100 m


Topologien mit Extended-Distance- und Standardkomponenten, Entfernung bis zu 100 m		
Nr. in Abbildung oben 1. Komponente 2. Komponente		
1	EK1100*	EK1101-0010
2	EK1121-0010	EtherCAT Box*
3	EK1100*	EK1101-0010

2.2 Abzweige mit M8-Anschluss

2.2.1 EK1122-0008

2.2.1.1 Einführung

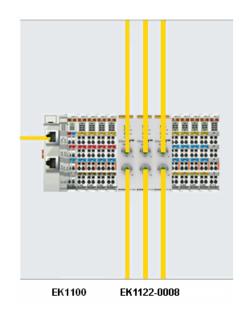


Abb. 16: EK1122-0008

EK1122-0008

Der 2-Port-EtherCAT-Abzweig ermöglicht es, EtherCAT-Sterntopologien aufzubauen. Durch das Verwenden mehrerer EK1122 in einer Station lässt sich ein modularer EtherCAT-Sternverteiler realisieren. An den Abzweigports können einzelne Geräte oder auch ganze EtherCAT-Stränge angeschlossen werden. Im Vergleich zum EK1122 verfügt der EK1122-0008 statt der beiden RJ45-Buchsen über zwei M8-Buchsen, die kompatibel zu den EtherCAT Boxen ausgeführt sind. Der Anschluss der EtherCAT-Abzweige erfolgt über M8-Buchsen; Link- und Activity-Status werden durch separate LED auf der Frontseite angezeigt. Die Run-LED zeigt den Status des EK1122 an. Mit TwinCAT und anderen geeigneten EtherCAT-Mastern unterstützt der EK1122-0008 auch das An- und Abkoppeln von EtherCAT-Strängen im laufenden Betrieb (Hot-Connect).

Mit entsprechend leistungsfähigen Ethernet-Leitungen z. B. ZK1090-3131-1xxx sind auch über M8 Leitungslängen von 100 m möglich.

Anschluss

Klemmstelle	Beschreibung
Bezeichnung	
X1	2 x M8-Buchse, geschirmt
X2	

Quick-Links

- EtherCAT Funktionsgrundlagen
- <u>Diagnose LEDs [▶ 55]</u>

2.2.1.2 Technische Daten

Technische Daten	EK1122-0008
Aufgabe im EtherCAT-System	Ankopplung von EtherCAT-Abzweigen über M8
Übertragungsmedium	Ethernet/EtherCAT-Kabel (min. CAT 5), geschirmt
Leitungslänge zwischen zwei Stationen	100 m (100BASE-TX)
Protokolle	EtherCAT
Übertragungsraten	100 MBit/s
Konfiguration	keine Adress- und Konfigurationseinstellung erforderlich
Businterface	2 x M8-Buchse, geschirmt, schraubbar
Durchlaufverzögerung	ca. 1 µs
Spannungsversorgung	aus E-Bus
Stromaufnahme E-Bus	typ. 220 mA

Allgemeine Daten	EK1122-0008
Abmessungen (B x H x T)	ca. 26 mm x 100 mm x 52 mm (angereiht: 23 mm)
Gewicht	ca. 65 g
zulässiger Umgebungstemperaturbereich im Betrieb	-25°C +60°C (erweiterter Temperaturbereich)
zulässiger Umgebungstemperaturbereich bei Lagerung	-40°C +85°C
zulässige relative Luftfeuchtigkeit	95 %, keine Betauung
Montage [▶ 58]	auf 35 mm Tragschiene nach EN 60715
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	beliebig
Zulassungen / Kennzeichnungen*)	CE, UKCA, EAC, <u>cULus [▶ 64]</u> , <u>ATEX [▶ 59]</u> , <u>IECEx [▶ 61]</u> , <u>cFMus [▶ 63]</u>

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Ex-Kennzeichnungen

Standard	Kennzeichnung
ATEX	II 3 G Ex nA IIC T4 Gc
IECEx	Ex nA IIC T4 Gc
cFMus	Class I, Division 2, Groups A, B, C, D Class I, Zone 2, AEx/Ex ec IIC T4 Gc

2.3 Abzweige mit LWL-Anschluss

2.3.1 EK1521

2.3.1.1 Einführung

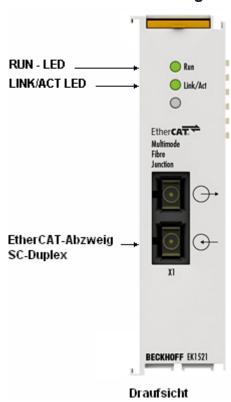


Abb. 17: EK1521

Der 1-Port-EtherCAT-Multimode-LWL-Abzweig ermöglicht in Verbindung mit einem EtherCAT-Koppler EK1100 die Umsetzung von der 100BASE-TX- auf die 100BASE-FX-Physik (Glasfaser). In Verbindung mit dem EtherCAT-Koppler EK1501 für Multimode-LWL-Glasfaser können so Entfernungen bis zu 2 km überbrückt werden. Auch kabelredundante Systeme mit Lichtwellenleiter lassen sich mit dem 1-Port-EtherCAT-Multimode-LWL-Abzweig realisieren. Die Run-LED zeigt den Status des EK1521.

Anschluss

Klemmstelle	Beschreibung
Bezeichnung	
X1	SC Duplex Stecker

Quick-Links

- EtherCAT Funktionsgrundlagen
- Anwendungshinweise [37]
- <u>Diagnose LEDs [▶ 56]</u>

2.3.1.2 Technische Daten

Technische Daten	EK1521
Aufgabe im EtherCAT-System	Ankopplung von EtherCAT-Abzweigen
Leitungslänge zwischen zwei Buskopplern	2.000 m (100BASE-FX) Multimode-Glasfaser
Protokolle	sämtliche EtherCAT-Protokolle
Übertragungsraten	100 MBit/s
Durchlaufverzögerung	ca. 1 µs
Konfiguration	keine Adress- und Konfigurationseinstellung erforderlich

Optische Daten	EK1521
Übertragungsmedium	Multimode-Glasfaser (MM)
Wellenlänge Transceiver	typ. 1310 nm
Busanschluss	1 x SC Duplex
Minimale Ausgangsleistung (opt.)	62,5/125 μm, NA = 0,275: -20 dBm avg. 50/125 μm, NA = 0,2: -23,5 dBm avg.
Minimale erforderliche optische Eingangsleistung (Empfindlichkeit)	-31 dBm

Allgemeine Daten	EK1521
Spannungsversorgung	aus E-Bus
Stromaufnahme	typ. 350 mA
Abmessungen (B x H x T)	ca. 26 mm x 100 mm x 52 mm (angereiht: 23 mm)
Gewicht	ca. 70 g
zulässiger Umgebungstemperaturbereich im Betrieb	-25°C +60°C (erweiterter Temperaturbereich)
zulässiger Umgebungstemperaturbereich bei Lagerung	-40°C +85°C
zulässige relative Luftfeuchtigkeit	95 %, keine Betauung
Montage [▶ 58]	auf 35 mm Tragschiene nach EN 60715
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	Beliebig
Zulassungen / Kennzeichnungen*)	CE, UKCA, EAC, cULus [▶ 64],
	<u>ATEX [▶ 59]</u> , <u>IECEx [▶ 61]</u>

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Ex-Kennzeichnungen

Standard	Kennzeichnung
ATEX	II 3 G Ex nA IIC T4 Gc
IECEx	Ex nA IIC T4 Gc

2.3.2 EK1521-0010

2.3.2.1 Einführung

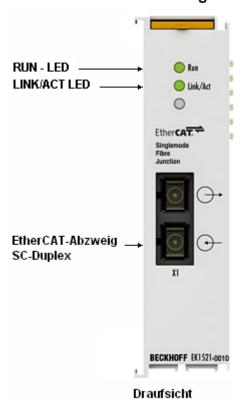


Abb. 18: EK1521-0010

Der 1-Port-EtherCAT-Singlemode-LWL-Abzweig ermöglicht in Verbindung mit einem EtherCAT-Koppler EK110x die Umsetzung von der 100BASE-TX- auf die 100BASE-FX-Physik (Glasfaser). In Verbindung mit dem EtherCAT-Koppler EK1501-0010 für Singlemode-LWL-Glasfaser können so Entfernungen bis zu 20 km überbrückt werden. Auch kabelredundante Systeme mit Lichtwellenleiter lassen sich mit dem 1-Port-EtherCAT-Singlemode-LWL-Abzweig realisieren. Die Run-LED zeigt den Status des EK1521-0010.

Anschluss

Klemmstelle	Beschreibung
Bezeichnung	
X1	SC Duplex Stecker

Quick-Links

- EtherCAT Funktionsgrundlagen
- Anwendungshinweise [37]
- <u>Diagnose LEDs [▶ 56]</u>

2.3.2.2 Technische Daten

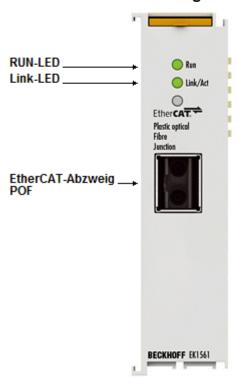
Technische Daten	EK1521-0010
Aufgabe im EtherCAT-System	Ankopplung von EtherCAT-Abzweigen
Leitungslänge zwischen zwei Buskopplern	20.000 m (100BASE-FX) Singlemode-Glasfaser
Protokolle	sämtliche EtherCAT-Protokolle
Übertragungsraten	100 MBit/s
Durchlaufverzögerung	ca. 1 µs
Konfiguration	keine Adress- und Konfigurationseinstellung erforderlich

Optische Daten	EK1521-0010
Übertragungsmedium	Singlemode-Glasfaser (SM)
Wellenlänge Transceiver	typ. 1310 nm
	Laser-Klasse 1, siehe <u>Hinweis [▶ 94]</u>
Busanschluss	1 x SC Duplex
Minimale Ausgangsleistung (opt.)	-15 dBm (bis Bj. 2022) -5 dBm (ab Bj. 2023)
Minimale erforderliche optische Eingangsleistung (Empfindlichkeit)	-25 dBm (bis Bj. 2022) -35 dBm (ab Bj. 2023)

Allgemeine Daten	EK1521-0010
Spannungsversorgung	aus E-Bus
Stromaufnahme	typ. 350 mA
Abmessungen (B x H x T)	ca. 26 mm x 100 mm x 52 mm (angereiht: 23 mm)
Gewicht	ca. 70 g
zulässiger Umgebungstemperaturbereich im Betrieb	-25°C +60°C (erweiterter Temperaturbereich)
zulässiger Umgebungstemperaturbereich bei Lagerung	-40°C +85°C
zulässige relative Luftfeuchtigkeit	95 %, keine Betauung
Montage [▶ 58]	auf 35 mm Tragschiene nach EN 60715
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	Beliebig
Zulassungen / Kennzeichnungen ^{*)}	CE, UKCA, EAC, <u>cULus [\bigsep 64]</u> , <u>ATEX [\bigsep 59]</u> , <u>IECEx [\bigsep 61]</u>

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Ex-Kennzeichnungen


Standard	Kennzeichnung
ATEX	II 3 G Ex nA IIC T4 Gc
IECEx	Ex nA IIC T4 Gc

2.4 Abzweige mit POF-Anschluss

2.4.1 EK1561

2.4.1.1 Einführung

Draufsicht

Abb. 19: EK1561

Der 1-Port-EtherCAT-POF-Abzweig EK1561 ermöglicht, in Verbindung mit einem EtherCAT-Koppler EK1100, die Umsetzung von der 100BASE-TX- auf die 100BASE-FX-Physik (POF – Polymeric Optical Fiber). Mit dem EK1561 und dem EtherCAT-Koppler EK1541 für POF können Entfernungen bis zu 50 m zwischen zwei Kopplern überbrückt werden. Die POF-Faser ist, im Gegensatz zur Glasfaser, gut vor Ort konfektionierbar. Die Run-LED zeigt den Status des EK1561 an.

Anschluss

Klemmstelle	Beschreibung
Bezeichnung	
X1	Versatile-Link-Anschluss für POF Duplex Stecker (ZS1090-0008)

Quick-Links

- EtherCAT Funktionsgrundlagen
- Anwendungshinweise [47]
- <u>Diagnose LEDs [▶ 57]</u>

2.4.1.2 Technische Daten

Technische Daten	EK1561
Aufgabe im EtherCAT-System	Ankopplung von EtherCAT-Abzweigen über POF
Leitungslänge zwischen zwei Stationen	max. 50 m (100BASE-FX) POF
Protokolle	sämtliche EtherCAT-Protokolle
Übertragungsraten	100 MBit/s
Durchlaufverzögerung	ca. 1 µs
Konfiguration	keine Adress- und Konfigurationseinstellung erforderlich

Optische Daten	EK1561
Übertragungsmedium	Polymeric Optical Fiber
Wellenlänge Transceiver	650 nm
	Laser-Klasse 1, siehe <u>Hinweis [▶ 94]</u>
Busanschluss	1 x Versatile Link für POF-Duplex-Stecker (Steckerset ZS1090-0008)
Minimale Ausgangsleistung (opt.)	NA = 0,5: -13,5 dBm
Minimale erforderliche optische Eingangsleistung (Empfindlichkeit)	-26 dBm

Allgemeine Daten	EK1561
Spannungsversorgung	aus E-Bus
Stromaufnahme E-Bus	typ. 200 mA
Abmessungen (B x H x T)	ca. 26 mm x 100 mm x 52 mm (angereiht: 23 mm)
Gewicht	ca. 65 g
zulässiger Umgebungstemperaturbereich im Betrieb	-25°C +60°C (erweiterter Temperaturbereich)
zulässiger Umgebungstemperaturbereich bei Lagerung	-40°C +85°C
zulässige relative Luftfeuchtigkeit	95 %, keine Betauung
Montage [▶ 58]	auf 35 mm Tragschiene nach EN 60715
Vibrations- / Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27
EMV-Festigkeit / Aussendung	gemäß EN 61000-6-2 / EN 61000-6-4
Schutzart	IP20
Einbaulage	beliebig
Zulassungen / Kennzeichnungen*)	CE, UKCA, EAC, <u>cULus</u> [<u>*</u> 64]

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

3 Inbetriebnahme/Anwendungshinweise

3.1 Hinweise für Abzweig mit RJ45-Anschluss

3.1.1 EK1121-0010 - Einstellungen und Portzuordnung

Im normalen Betrieb sind am EK1121-0010 keine Einstellungen vorzunehmen.

Die im TwinCAT System Manager verwendete Portbezeichnung bildet sich wie folgt auf den EK1121-0010 ab:

Abb. 20: Portbezeichnung beim EK1121-0010

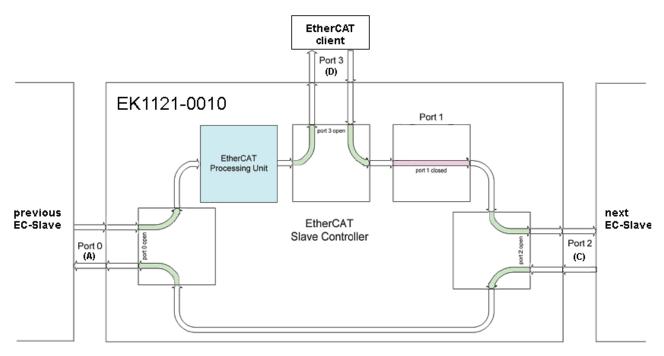


Abb. 21: Interne und externe Portzuordnung EK1121-0010

3.1.2 EK1122 - Einstellungen und Portzuordnung

Im normalen Betrieb sind am EK1122 keine Einstellungen vorzunehmen.

Die im TwinCAT System Manager verwendete Portbezeichnung bildet sich wie folgt auf den EK1122 ab:

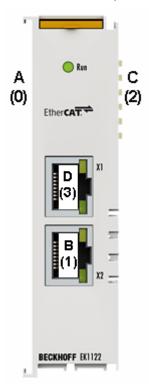


Abb. 22: Portbezeichnung beim EK1122

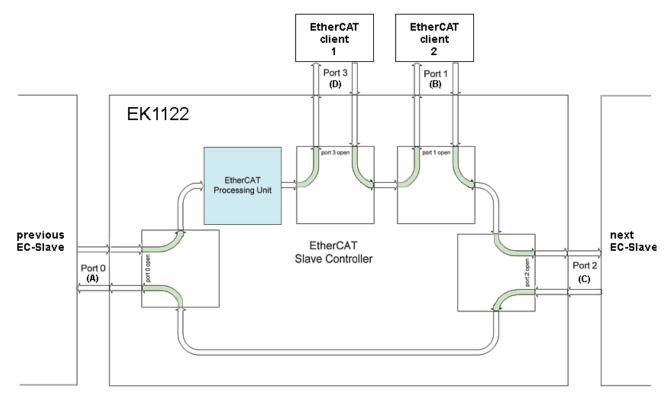


Abb. 23: Interne und externe Portzuordnung EK1122

3.2 Hinweise für Abzweig mit M8-Anschluss

3.2.1 EK1122-0008 - Einstellungen und Portzuordnung

Im normalen Betrieb sind am EK1122-0008 keine Einstellungen vorzunehmen.

Die im TwinCAT System Manager verwendete Portbezeichnung bildet sich wie folgt auf den EK1122-0008 ab:

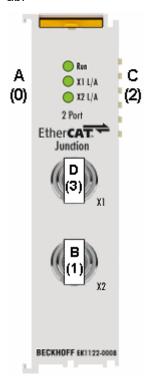


Abb. 24: Portbezeichnung beim EK1122-0008

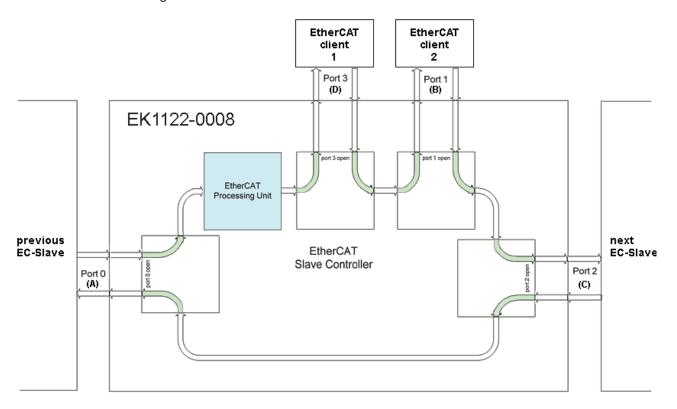


Abb. 25: Interne und externe Portzuordnung EK1122-0008

3.3 Hinweise für Abzweig mit LWL-Anschluss

Tragschienenmontage

Montage

Beachten Sie, dass der EK1521, EK1521-0010 bis zum Kontakt mit der Hutschiene aufgeschoben wird und hörbar auf der Hutschiene einrastet. Siehe <u>Tragschienenmontage</u> [• 67].

3.3.1 Grundlagen der LWL-Technologie

Bei der Verwendung von LWL-Verbindungen zur Datenübertragung gibt es verschiedene Einflussfaktoren auf die Signalübertragung, die beachtet werden müssen, um eine zuverlässige Übertragung gewährleisten zu können. Im Folgenden werden wichtige Grundlagen zur LWL-Technologie beschrieben.

Dämpfung

Am Ende einer Verbindung mit Lichtwellen-Leitern kommt weniger Licht an, als am Verbindungsanfang eingespeist wurde. Dieser Lichtverlust zwischen Anfang und Ende der Übertragungsstrecke wird als Dämpfung bezeichnet. Die Dämpfung zwischen zwei Punkten wird häufig in Dezibel (dB) angegeben. Dezibel ist jedoch keine Einheit, sondern es handelt sich um ein Verhältnis, im Falle der LWL um das Verhältnis zwischen der Lichtenergie am Anfang und am Ende der Verbindung. Es ist der zehnte Teil eines Bel (B) (1 B = 10 dB). Allgemein zeigt Dezibel einen Leistungspegel L_P aus dem Verhältnis einer Leistung P₁ zu einer anderen Leistung P₂.

• $L_P[dB] = 10*log_{10}(P_1/P_2)$

Ein positiver Leistungsfaktor ist eine Signalverstärkung, ein negativer Leistungsfaktor hingegen eine Abschwächung bzw. Dämpfung des Signals.

Die Dämpfung einer LWL-Verbindung ist maßgeblich von drei Einflussfaktoren bestimmt. Diese Einflussfaktoren sind die Dämpfung in der LWL-Faser, die Dämpfung in den Steckverbindung und die Dämpfungen, die durch Spleiße in der LWL-Verbindung entstehen. Die gesamte Dämpfung ergibt sich daher durch

 LWL-Streckenverlustdämpfung [dB] = Faserverlustdämpfung [dB] + Steckereinfügedämpfung [dB] + Spleißeinfügedämpfung [dB]

Wobei

- Faserverlustdämpfung [dB] = Faserdämpfungskoeffizient [dB/km)] x Länge [km]
- Steckereinfügedämpfung [dB] = Anzahl Steckverbinder x Steckereinfügedämpfung [dB]
- Spleißeinfügedämpfung [dB] = Anzahl Spleiße x Spleißeinfügedämpfung [dB]

Dispersion

Ein weiterer Einfluss, der bei der Signalübertragung beachtet werden muss ist die Dispersion. Die Dispersion beschreibt die Spreizung bzw. Verbreiterung eines Lichtimpulses. Durch Laufzeitunterschiede, die sich im Lichtwellenleiter durch verschiedene Einkopplungswinkel der Lichtwellen ergeben, verbreitet sich der optische Puls und ist daher am Ausgang breiter, als am Eingang. Je länger die Übertragungsstrecke ist, umso größer ist auch die Dispersion.

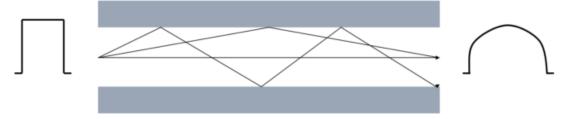


Abb. 26: Dispersion

Wenn höhere Datenraten durch die LWL-Verbindung übertragen werden sollen, müssen die Impulse am Eingang schneller gesendet werden. Dann kann es jedoch passieren, dass Impulse am Ausgang ineinanderlaufen und so nicht mehr voneinander unterschieden werden können. Die Dispersion begrenzt so die maximale Bandbreite der LWL-Verbindung.

Die maximale Bandbreite ist im Datenblatt eines LWL-Kabels als Bandbreiten-Längen-Verhältnis in der Einheit MHz*km angegeben. Je länger also die Übertragungsstrecke ist, desto geringer ist die verfügbare Bandbreite. Im Datenblatt einer LWL-Faser ist immer das Bandbreiten-Längen-Verhältnis bzw. -Produkt angegeben. Die Länge der Übertragungsstrecke kann dann mit der notwenigen Bandbreite ausgerechnet werden.

s [km] = Bandbreite [MHz] / Bandbreiten-Längen-Verhältnis [MHz/km]

Weitere Einflüsse auf die Signalübertragung

Neben den Haupteinflüssen (Dämpfung und Dispersion), die die Übertragungsstrecke begrenzen, muss bei der Installation und der Wartung von LWL-Übertragungsstrecken auf Sorgfalt geachtet werden.

Scharfe Knicke und Mikrobiegungen in der LWL-Faser führen zu zusätzlichen Reflexionen in der Faser, wodurch die Einflüsse der Dämpfung und der Dispersion verstärkt werden. Angegebene Biegeradien von LWL-Kabeln sind unbedingt zu beachten.

Auch schlecht installierte Verbinder haben einen großen Einfluss auf die Signalqualität. Durch mangelhafte Verbindungen hat die LWL-Faser möglicherweise einen zu großen Abstand zum Verbindungsstück, sodass die Lichtwellen nicht im richtigen Eintrittswinkel in die Faser gelangen.

Der dritte, zu beachtende, Einfluss auf die Signalübertragung ist die Verschmutzung oder Beschädigung von LWL-Faserenden. Verschmutzungen oder Beschädigungen sind, aufgrund der Größe der Faser von häufig nur 125 µm, nicht mit bloßen Auge erkennbar. Nur ein Mikroskop mit ausreichender Vergrößerung (mind. Faktor 100) ermöglicht die Prüfung der Faserenden. Um Verschmutzungen vorzubeugen sollte immer die zum Kabel mitgelieferte Kabelabdeckung auf das Faserende gesteckt werden.

Leistungs- und Dämpfungsbudget

Das Leistungsbudget gibt die minimale Leistung an, die zwischen Sender und Empfänger vorhanden ist. Das Dämpfungsbudget beschreibt die vorhandene Dämpfung zwischen Sender und Empfänger durch die bereits beschriebenen Dämpfungseinflüsse Faser, Verbindungen und Spleiße.

In LWL-Sendern und -Empfängern sind Transceiver (von engl. Transmitter (Sender) und Receiver (Empfänger)) verbaut. Dieser Transceiver ist ein kombiniertes Sende- und Empfangsgerät. Im Datenblatt des Transceivers finden sich in der Regel zwei zentrale Werte, die für die Berechnung des Leistungsbudgets benötigt werden. Diese Werte sind die **minimale Ausgangsleistung** (schlechtester Pegel) des Senders und die **maximale Empfindlichkeit** (d.h. niedrigste Empfangsleistung/Pegel) des Empfängers, bei der er noch Signale erkennt.

Beide Werte werden häufig in der Einheit Dezibel Milliwatt (dBm) angegeben. dBm beschreibt den Leistungspegel bezogen auf einen Referenzwert von 1 mW.

```
L_{P}[dB] = 10*log_{10}(P_{1}/1 \text{ mW})
```

0 dBm entspricht dann einem Leistungswert von 1 mW, positive dBm-Werte zeigen Leistungswerte >1 mW und negative dBm-Werte Leistungswerte <1 mW an.

Für die technische Einsatzabschätzung wird daher als Worst-Case-Annahme die Differenz zwischen der minimalen Ausgangsleistung und der maximalen Empfindlichkeit am Eingang als vorhandenes Leistungsbudget betrachtet:

```
Leistungsbudget = minimale Ausgangsleistung - maximale Empfindlichkeit
```

Hinweis: In der Praxis ist das Leistungsbudget meist höher, da die typ. Sendeleistung höher ist als die minimale. Dies ist jedoch nicht immer der Fall.

Die Leitungsdämpfung ergibt sich aus den oben beschriebenen Einflüssen auf die Dämpfung.

Dämpfungspegel [dB] = Faserverlustdämpfung [dB] + Steckereinfügungsdämpfung [dB] + Spleißeinfügungsdämpfung [dB].

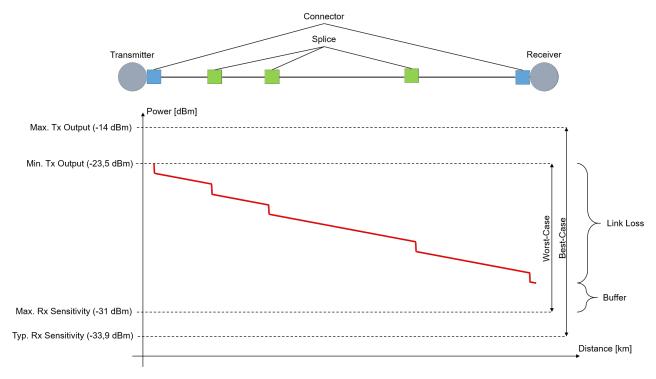


Abb. 27: Leistungs- und Dämpfungsbudget

Der Dämpfungspegel darf das Leistungsbudget nicht überschreiten da sonst kein gesicherter Empfang mehr möglich ist. Empfohlen wird sogar eine Reserve von >3 dB (siehe Grafik), damit auch trotz Alterungseffekten ein Langzeitbetrieb über Jahre möglich ist: im Sender befindliche Quellen können altern und an Leistung verlieren, Steckverbinder oder Spleiße können sich verschlechtern oder Steckverbinder können schmutzig werden, wenn sie zum Umleiten oder Testen geöffnet werden. Wenn später Kabel versehentlich durchtrennt werden, ist eine Reserve nützlich, um Spleiße zur Wiederverbindung unterzubringen.

Beispielrechnung von Leistungs- und Dämpfungsbudget

In einer Beispielrechnung soll hier einmal das Leistungs- und Dämpfungsbudget für eine Übertragungsstrecke von 2,1 km zwischen einem EK1501 und einem EK1521 mit einer Multimode-Faser der Stärke 50/125 µm berechnet werden. Die beiden betrachteten LWL-Koppler haben denselben Transceiver. Die optischen Daten sind in den Technischen Daten des EK1521 angegeben.

Zuerst muss das Leistungsbudget berechnet werden, welches zwischen den beiden Kopplern vorhanden ist:

Leistungsbudget		
Kenngröße	Wert	
Minimale Ausgangsleistung [50/125 μm]	-23,5 dBm	
Maximale Empfindlichkeit	-31 dBm	
Leistungsbudget	7,5 dBm	

Im nächsten Schritt muss das Dämpfungsbudget, also die Dämpfung über die gesamte Übertragungsstrecke berechnet werden. Für dieses Beispiel wird eine Mulitmode-Faser der Stärke 50/125 µm von Beckhoff eingesetzt (ZK1091-1001-xxxx). Im Datenblatt des LWL-Kabels ist bei einer Wellenlänge von 1310 nm eine maximale Dämpfung von 0,8 dB/km angegeben. Das Kabel wird an beiden Seiten über einen SC-Stecker verbunden. Der typische Dämpfungswert von SC-Steckern ist 0,25 dB, sollte jedoch trotzdem anwendungsspezifisch geprüft werden. Über die gesamte Strecke wurde 3 Mal gespleißt. Pro Spleißverbindung kann eine typische Dämpfung von 0,3 dB angenommen werden, jedoch ist die Dämpfung eines Spleißes abhängig von seiner Güte. Aus diesen Werten muss im Folgenden das Dämpfungsbudget berechnet werden.

40 Version: 3.9.0 EK112x, EK15xx

Dämpfungsbudget				
Kenngröße	Anzahl	Wert		
Faserverlustdämpfung (0,8 dB/km)	2,1 km	1,68 dB		
Steckereinfügedämpfung (0,25 dB)	2	0,5 dB		
Spleißeinfügedämpfung (0,3 dB)	3	0,9 dB		
Dämpfungsbudget		3,08 dB		

Wenn man nun das Dämpfungsbudget vom Leistungsbudget abzieht, ergibt sich ein Leistungsbuffer von 4,42 dB. Dieses ist größer als 3 dB und ist daher für die meisten Anwendungen als Buffer ausreichen, sodass auch ein zusätzlicher Spleiß oder eine geringe Verschmutzung der Faser nicht zum Ausfall der Datenübertragung führen würde.

Sollten im Datenblatt von Transceivern, Kabeln oder Steckern mehrere Werte für eine Kenngröße angegeben werden, sollte immer der schlechteste Wert angenommen und mit diesem Wert gerechnet werden.

Bei der betrachteten Übertragungsstrecke muss neben der Dämpfung auch immer das im Datenblatt der Faser angegebene Bandbreiten-Längen-Verhältnis betrachtet werden und, wie oben gezeigt, ausgerechnet werden, ob die Umsetzung der Länge der Übertragungsstrecke mit der gewünschten Bandbreite und der Faser möglich ist.

Messtechnische Evaluierung einer LWL-Übertragungsstrecke

Eine LWL-Übertragungsstrecke kann mit Kennwerten aus Datenblättern beschrieben und evaluiert werden. Um jedoch ein reales Ergebnis zur Dämpfung über die gesamte Strecke zu haben, muss die Strecke mit einem optischen Leistungsmesser (engl. Optical Power Meter, OPM) vermessen werden. Mit einem OPM kann die Leistung am Ende der Übertragungsstrecke gemessen werden.

Bei der Messung mit einem OPM ist unbedingt zu beachten, dass lediglich der benötigte Adapter (FC, SC, ...) an das OPM geschraubt ist. Werden mehrere Adapter übereinander an das OPM geschraubt ist die Entfernung zwischen dem Stecker und dem Detektor im OPM zu groß, sodass geringere Leistungswerte angezeigt werden (größere Dämpfung als real vorhanden).

OPM ohne Adapter

OPM mit aufgeschraubtem SC Adapter

OPM mit aufgeschraubtem FC Adapter

OPM mit aufgeschraubtem FC u. SC Adapter - FALSCH

3.3.2 EK1521-00x0 - Einstellungen und Portzuordnung

Im normalen Betrieb sind am EK1521, EK1521-0010 keine Einstellungen vorzunehmen.

Die im TwinCAT System Manager verwendete Portbezeichnung bildet sich wie folgt auf den EK1521, EK1521-0010 ab:

Abb. 28: Portbezeichnung EK1521, EK1521-0010

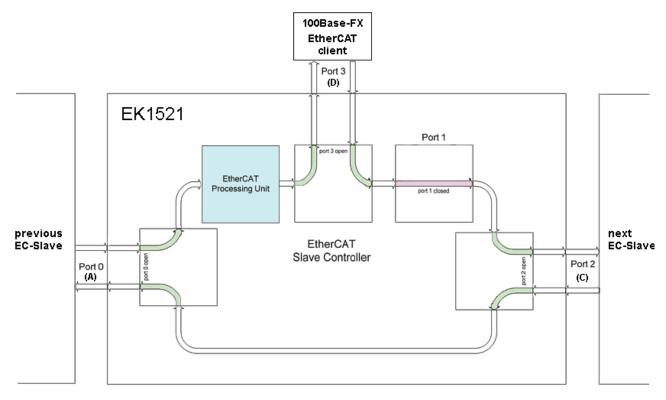


Abb. 29: Interne und externe Portzuordnung EK1521, EK1521-0010

3.3.3 Hinweise zum verwendbaren LWL-Kabel

Allgemeine Informationen zu LWL-Typen

Man unterscheidet bei Lichtwellenleitern (LWL) nach Multimode- und Singlemodetypen und nach Stufenund Gradientenindex.

Stufen- und Gradientenindex

Lichtwellenleiter bestehen aus zwei konzentrischen Materialien, dem Kern und einer Umhüllung. Dazu kommt noch ggf. ein (farbiger) Schutzmantel. Kern und Umhüllung haben einen unterschiedlichen Brechungsindex, deshalb werden die Lichtwellen (Moden; eine Mode ist eine Eigenwelle im LWL) an der Übergangsstelle reflektiert und in den Kern zurückgeworfen. Durch den sprunghaften Brechungsindexübergang wird diese Faser als Stufenindex bezeichnet. Wird durch Materialvermischung ein allmählicher/parabolischer Übergang vom Kernbrechungsindex zum Mantelbrechungsindex erreicht, wird dies als Gradientenindex bezeichnet. Bei der Gradienteindexfaser werden die Moden allmählich zum Kern zurückgebeugt, dadurch findet ein Laufzeitausgleich statt und die Qualität eines Lichtpulse am Austrittsende ist deutlich besser als bei einer Multimode-Stufenindexfaser, bei der verschiedene Lichtmoden unterschiedlich lange Signallaufzeiten haben (Modendispersion) - eine Flankenverschleifung ist dort die Folge.

Singlemode

Singlemode-Fasern haben einen sehr dünnen Kern (9 µm) und leiten deshalb nur eine einzige Mode des verwendeten Lichts mit hoher Signalgüte und fast ohne Modendispersion. Es gibt sie nur als Stufenindexfaser. Durch die hohe Signalgüte eignen sie sich für große Übertragungsbandbreiten > 10 GHz*km und Entfernungen > 50 km. Das Brechzahlprofil von Singlemode-Fasern ist so dimensioniert, dass die bei Multimode-Fasern problematische Mehrwegeausbreitung (intermodale Dispersion) entfällt – das Signallicht breitet sich in einer Singlemode-Faser nur in einem einzigen geführten Wellenleitermodus aus, daher die Bezeichnung single-mode. Damit sind wesentlich größere Übertragungsdistanzen und/oder -bandbreiten möglich, und der als nächstes auftretende limitierende Effekt ist die Farbverzerrung des übertragenen Modus.

Multimode

Multimode-LWL werden als Stufenindex oder Gradientenindex gefertigt. Stufenindex-Multimodefasern eignen sich für Übertragungsbandbreiten bis 100 MHz*km und Entfernungen bis max. 1 km. Gradientenindex-Multimodefasern mit einem Kern von 50 oder 62,5 µm erreichen Übertragungsbandbreiten > 1 GHz*km und Reichweiten > 10 km. Multimode bedeutet, dass der Kern des LWL-Kabels dick genug ist, damit sich mehrere Moden des verwendeten Lichts reflektierend im Kabel fortbewegen können.

Es gibt unterschiedliche Typen von Multimode-LWL-Fasern, die für unterschiedliche Wellenlängen oder Übertragungsquellen optimiert sind. Durch die Optimierung der Faser für unterschiedliche Wellenlängen unterscheidet sich die Dämpfung bei unterschiedlichen Übertragungsraten und das Bandbreiten-Längen-Verhältnis für die unterschiedlichen Fasertypen. Die genauen Werte müssen dem Datenblatt der ausgewählten Faser für die jeweilige Anwendung entnommen werden, um so zu prüfen, ob der Einsatz der ausgewählten Faser sinnvoll ist.

- OM1: 62,5/125 μm, optimiert f
 ür 1310 nm LEDs
- OM2: 50/125 μm, optimiert f
 ür 1310 nm LEDs
- OM3: 50/125 µm, optimiert für 850 nm VCSEL (von englisch vertical-cavity surface-emitting laser)
- OM4: 50/125 μm, optimiert für 850 nm VCSEL (von englisch vertical-cavity surface-emitting laser)

3.3.4 Einsatz mit dem EK1521 und EK1521-0010

Einsatz mit dem EK1521 und EK1521-0010

Der EK1521, EK1521-0010 ist zur Kombination mit LWL-Kabeln mit folgenden Eigenschaften bestimmt:

- SC Duplex Stecker
- EK1521: Duplex Multimode 50/125 μm oder 62,5/125 μm (innerer/äußerer Kerndurchmesser). Der Einsatz von beiden Durchmessern ist möglich. Es wird jedoch die Verwendung von 50/125 μm aufgrund der geringeren Dämpfung empfohlen.
- EK1521-0010: Duplex Singlemode 9/125 µm (innerer/äußerer Kerndurchmesser). Ein typ. verwendbares Kabel kann nach der Spezifikation ITU-T G.652.D (0.4 dBm/km bei 1310 nm) gefertigt sein.

Empfohlene Stecker

Es wird der Einsatz von SC/PC -Steckern für die Konnektierung des EK1521, EK1521-0010 empfohlen. Der Vorteil dieser Stecker in "PC" (physical contact) Ausführung ist die ballige Endfläche, so dass beim Zusammenstecken der Stecker der für die Übertragung relevante Bereich des Faserkerns optimal verbunden wird. Weitere Ausführungen sind z. B. SC/UPC (ultrapolish PC), SC/HRL (high return loss) oder SC/APC-Stecker (angled physical contact). Bei diesen Steckern wird zusätzlich durch die mit ca. 8° zur Faserachse angewinkelte Steckerendfläche reflektiertes Licht aus dem Kern über das Mantelglas in die Luft hinaus gebrochen, was Störungen in der Datenübertragung vermeidet und die Kerngröße der Rückstreuung optimiert.

50/125 μm oder 62,5/125 μm

Der Einsatz von beiden Durchmessern ist möglich. Es wird jedoch die Verwendung von 50/125 μm aufgrund der geringeren Dämpfung empfohlen.

Im LWL-Bereich werden üblicherweise die Wellenlängen 850 nm und 1310 nm für die Datenübertragung verwendet. Die am Markt verfügbaren Glasfaserkabel sind meist zur Verwendung in einem dieser Bereiche optimiert, da die Die Dämpfung des Signals ist (wie auch im Kupferkabel) frequenzabhängig ist - damit werden dann mit der jeweiligen Wellenlänge große Reichweiten von mehreren km erzielt. Allgemein weisen Glasfaserkabel im 1310 nm-Fenster eine geringere Dämpfung auf als im 850 nm-Fenster.

Im EK1521, EK1521-0010 wird ein Transceiver mit der Wellenlänge 1310 nm eingesetzt.

Reichweite und Bandbreitenprodukt

LWL-Kabel sind in verschiedenen Qualitäten von namhaften Herstellern erhältlich. Für den Anwender maßgebend ist u.a. das frequenzabhängige Bandbreitenprodukt eines Kabels, angegeben in [MHz*km. Je größer das Bandbreitenprodukt, desto geringer ist die Dämpfung - damit steigt die mit diesem Leiter erzielbare Reichweite (s. ITU-T G-651). Zur Erzielung der maximalen Reichweite mit dem EK1521, EK1521-0010 sind deshalb Lichtwellenleiter mit einem möglichst hohen Bandbreitenprodukt bei 1310 nm zu verwenden - empfohlen wird ein Einsatz von LWL der Klasse OM2 (EN50173:2002).Standard-LWL verfügen über ein Bandbreitenprodukt von mindestens 500 MHz*km bei 1310 nm, höherwertigere für Entfernungen > 500 m über > 1000 MHz*km. Um die Maximalreichweiten zu erzielen, muss die Gegenstelle zum EK1521, EK1521-0010 ebenfalls solche Reichweiten unterstützen.

Verlegehinweise

- · zulässiger Biegeradius
- · zulässige Zugfestigkeit
- Empfindlichkeit der ungeschützten Kontaktenden

Zur weiteren Information können folgende weitere Quellen dienlich sein:

- ITU Empfehlung ITU-T G.651 G.655
- EN 50173:2002
- EN 60793-2

Konnektieren und Lösen des LWL-Kabels am Abzweig

HINWEIS

Beschädigung des Kabels möglich!

Zur Demontage des LWL-Kabels nur am Stecker ziehen, der die Verriegelung löst - niemals am LWL-Kabel allein!

Gekreuzte Kabel

Beachten

Beachten Sie, dass bei der Verbindung der EK1521, EK1521-0010 zum EK1501-xxxx ggf. "gekreuzte" Kabel verwendet werden müssen, um eine Verbindung herzustellen.

Praxistipp:

Der infrarote Lichtaustritt kann in vielen Fällen mittels einer Digital-/Handykamera am Abzweig bzw. am Koppler sichtbar gemacht werden (siehe Abbildung). Stellen Sie sicher, dass beim Stecken der LWL-Leitung nicht "Licht auf Licht" trifft ($Tx \to Tx$). In diesem Fall kann keine Verbindung aufgebaut werden und die Kabel sind zu kreuzen ($Tx \to Rx$).

Abbildung: Visualisierung von infrarotem Licht am SC Duplex Stecker

Verwendung von Blindstopfen

Zum Schutz des Transceivers vor Umwelteinflüssen sollten nicht verwendete Anschlussbuchsen mit den mitgelieferten Blindstopfen verschlossen werden!

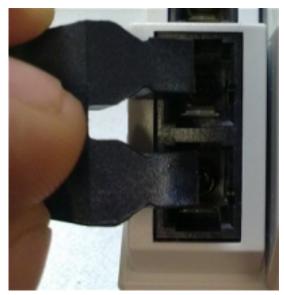


Abbildung: Blindstopfen in nicht verwendeten Anschlussbuchsen

3.4 Hinweise für Abzweig mit POF-Anschluss

Tragschienenmontage

Montage

1

Beachten Sie, dass der EK1561 bis zum Kontakt mit der Hutschiene aufgeschoben wird und hörbar auf der Hutschiene einrastet s. <u>Tragschienenmontage</u> [• 67].

3.4.1 EK1561 - Einstellungen und Portzuordnung

Im normalen Betrieb sind am EK1561 keine Einstellungen vorzunehmen. Die im TwinCAT System Manager verwendete Portbezeichnung bildet sich wie folgt auf den EK1561 ab:

Abb. 30: Portbezeichnung EK1561

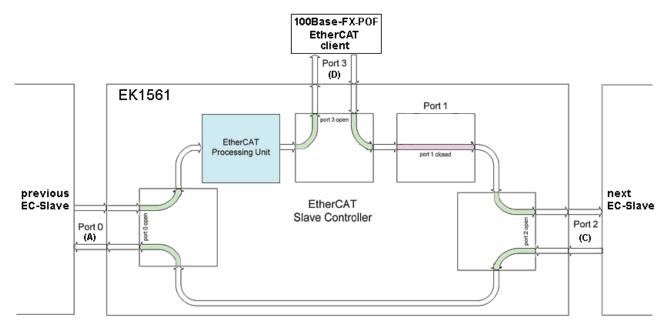


Abb. 31: Interne und externe Portzuordnung EK1561

3.4.2 Hinweise zum verwendbaren POF-Kabel

Allgemeine Informationen POF-Kabel

Die Standard-Polymerfaser ist 1 mm dick und besteht aus einem 0,98 mm dicken Kern aus Polymethylmethacrylat (PMMA) sowie einem dünnen Mantel. Um eine Lichtführung durch den Effekt der Totalreflexion im Kern zu ermöglichen, besteht der meist sehr dünne Mantel aus fluoriertem PMMA, welches einen geringeren Brechungsindex aufweist. Die Kerndurchmesser bewegen sich zwischen 0,06 und 1 mm, wodurch einfache Steckverbindungen unproblematisch zu realisieren sind. Weiterhin kann somit auf das zur Verbindung von Glasfasern häufig eingesetzte Spleißverfahren, und dem damit verbundenen unnötig hohen Aufwand, in der Regel verzichtet werden. Die maximale Einsatztemperatur von Standard-POF liegt bei etwa 60°C und hat ein Brechungsprofil mit Stufenindex (SI-POF). Der Brechungsindex des Kernmaterials liegt bei 1,49, der des Mantels bei 1,41. Die Differenz bestimmt die numerische Apertur (NA) und damit den maximalen Ausbreitungswinkel. Dieser liegt bei einer Differenz von 5 % bei etwa 20 Grad gegenüber der Faserachse, was zur Reduzierung der Bandbreite führt.

Aufgrund der im Vergleich zur Glasfaser einfachen und nahezu universell einsetzbaren Verbindungstechniken finden POF insbesondere Anwendung bei kurzen Datenübertragungsstrecken, so beispielsweise innerhalb von Räumen, technischen Geräten, mechanischen Anlagen oder auch Personenkraftwagen.

Die POF haben eine Dämpfung von etwa 140 dB/km bei einer Wellenlänge von 650 nm, so dass bei der Anwendung mit dem EK1561 eine Datenübertragungstrecke von max. 50 m zu erreichen ist.

Werden zusätzliche Steckverbindungen in die Strecke eingebracht, vergrößert dies die Signaldämpfung. Je zusätzlichem Steckverbinder reduziert sich somit die zulässige max. Streckenlänge um typ. 6,5 m.

48 Version: 3.9.0 EK112x, EK15xx

3.4.3 Einsatz mit dem EK1561

•

Empfohlene Stecker und POF-Kabel

1

Es wird der Einsatz des bei Beckhoff erhältlichen Steckersets <u>ZS1090-0008</u> [▶ <u>51</u>] (Versatile Link Duplex-Stecker) in Verbindung mit einer Duplex-Polymerfaser 2 x 2,2 mm Außendurchmesser (Z1190) für die Konnektierung des EK1561 empfohlen.

•

Verlegehinweise

- zulässiger Biegeradius (im Allgemeinen gilt r ≥ 25 mm, Herstellerangaben beachten!)
- · zulässige Zugfestigkeit
- Empfindlichkeit der ungeschützten Kontaktenden

Konnektieren und Lösen des POF-Kabels am Abzweig

Zum Konnektieren des Kabels schieben Sie den Stecker (als Zubehör im Steckerset ZS1090-0008 erhältlich) bis zum hörbaren Einrasten in die Anschlussöffnung.

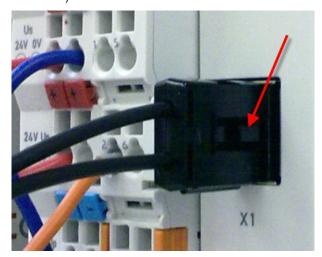


Abb. 32: Rastnase mit Entriegelung am POF-Duplex-Stecker

Zum Lösen des Steckers die Entriegelung mit der Rastnase betätigen. Diese befindet sich dabei rechtseitig am Stecker (siehe Abb. "Rastnase mit Entriegelung am POF-Duplex-Stecker")

HINWEIS

Beschädigung des Kabels möglich!

Zum Lösen des Kabels die Entriegelung am Stecker drücken und gleichzeitig am Stecker ziehen - niemals am POF-Kabel allein!

HINWEIS

Tx / Rx -Kanalbelegung

Achten Sie bei der <u>Kabelkonfektionierung</u> [▶ 51] auf die Belegung der optischen Kanäle in der Anschlussbuchse. Beim EK1561 ist der lichtemittierende Transmitterkanal (Tx) der obere Auslass in der Anschlussbuchse.

Abbildung: Transmitterkanal beim EK1561

Beachten Sie unbedingt den <u>Sicherheitshinweis</u> [▶ 94] zur Laser-Klasse 1!

HINWEIS

Verwendung von Blindstopfen

Zur Vermeidung von Unfällen durch Blendung (Laserstrahl Klasse 1, bitte <u>Sicherheitshinweis</u> [▶ 94] beachten) und zum Schutz des Transceivers vor Umwelteinflüssen sollten nicht verwendete Anschlussbuchsen mit den mitgelieferten Blindstopfen verschlossen werden!

Abbildung: Blindstopfen in nicht verwendeten Anschlussbuchsen

3.5 Hinweise zur Konfektionierung von POF-Kabeln mit dem Steckerset ZS1090-0008

Abb. 33: Duplex-Steckerset ZS1090-0008

Das Duplex-Steckerset ZS1090-0008 von Beckhoff besteht aus 10 Duplex Versatile-Link-Steckverbindern und mehreren Bögen Schleif- und Polierpapier.

Schritt-für-Schritt-Anleitung zur Konfektionierung des POF-Kabels

Die nachfolgende Schritt-für-Schritt-Anleitung beschreibt die korrekte Konfektionierung eines POF-Kabels mit einem Versatile-Link-Duplex-Steckverbinder. Die Steckverbinder werden mit Standard-Werkzeugen wie Cutter-Messer oder Abisolierzange an die Kabelenden angebracht. Die Endpolitur des konfektionierten Kabels wird mit dem im Steckerset beigefügten Polierset, bestehend aus einer Plastik-Schleiflehre, Schleifpapierbögen mit der Körnung 600 und rosa Polierbögen durchgeführt. Die konfektionierte Steckverbindung kann sofort nach der Bearbeitung benutzt werden.

Für die Arbeitsschritte benötigtes Material:

- 1. POF-Kabel (Polymeric optical fiber, z. B. Z1190 von Beckhoff)
- 2. Cutter-Messer oder Schere
- 3. Abisolierzange
- 4. Polierset (im Steckerset ZS1090-0008 von Beckhoff enthalten)
- 5. Versatile Link Duplex-Stecker (im Steckerset ZS1090-0008 von Beckhoff enthalten)

1. Abisolieren des POF-Kabels

Das Kabel sollte auf einer Länge zwischen 100 mm und 150 mm vom Kabelende aufgetrennt sein, um die nachfolgenden Arbeiten ordnungsgemäß durchführen zu können.

Nachdem Sie das Kabel auf die gewünschte Länge gekürzt haben, entfernen sie mittels Abisolierzange ca. 7 mm der äußeren Ummantelung der Einzeladern. Die beiden Kabelenden sollten ungefähr gleich lang abisoliert sein.

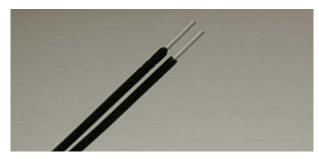


Abb. 34: POF-Kabel auf gleiche Länge abisoliert

2. Anbringen des Steckverbinders

Schieben Sie beide Kabelenden in den Steckverbinder und ziehen Sie den Steckverbinder bis zum Anschlag zurück. Die Fasern sollten jetzt nicht mehr als 1,5 mm aus den vorderen Öffnungen herausragen.

Sie schließen den Steckverbinder, indem Sie die obere und untere Hälfte zusammenklappen und einrasten lassen.

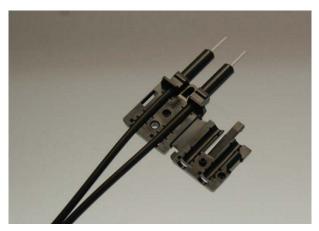


Abb. 35: In den Steckverbinder eingelegtes Kabel

Abb. 36: Geschlossener Steckverbinder

Achten Sie beim Einlegen der Leiter in die Steckverbinder auf die gekreuzte Verbindung der optischen Kanäle zur Gegenseite (Tx1 \rightarrow Rx2; Tx2 \rightarrow Rx1). Als Orientierung dient die Nase des Scharniers am Stecker.

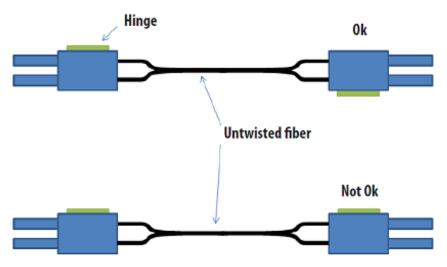


Abb. 37: Korrekt verbundene Optische Kanäle

3. Schleifen und Polieren

Fasern, die mehr als 1,5 mm aus dem Steckverbinder herausragen, müssen mit einem Cutter-Messer oder einer Schere eingekürzt werden.

Schieben Sie nun den Steckverbinder komplett in die Schleiflehre, so dass die zu polierenden Enden auf der unteren Seite herausragen. Die Schleiflehre ist zum Polieren von einem oder zwei Simplex- oder einem Duplex-Steckverbinder geeignet.

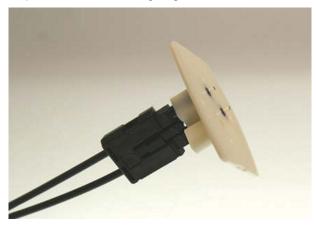


Abb. 38: Schleiflehre mit herausragenden Faserenden

Verschleißanzeige

Die Verschleißanzeige der Schleiflehre besteht aus vier Punkten auf der Unterseite. Sollte einer dieser Punkte nicht mehr sichtbar sein, ist die Schleiflehre zu ersetzen.

Pressen Sie nun mit gleichmäßigen Druck und möglichst senkrecht die Schleiflehre auf das Schleifpapier. Um ein gleichmäßiges Schleifergebnis zu erzielen, beschreiben Sie beim Schleifen die Form einer "8", bis die Fasern bündig mit der Schleiflehre abschließen. Anschließend reinigen Sie die Schleiflehre und den Steckverbinder von unten mit einem weichen, trockenen Tuch.

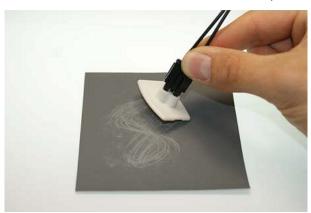


Abb. 39: Polieren in Form einer "8"

4. Feinpolitur

Fahren Sie nun mit der Feinpolitur und dem rosa Polierbogen in gleicher Art und Weise fort. Dazu den bündigen Steckverbinder mit der Schleiflehre auf der matten Seite des Polierbogens mit leichtem Druck aufsetzen und die Form einer "8" maximal 25 mal beschreiben. Nach Abschluss der Prozedur sollte das Faserende flach, glatt und sauber sein.

Verbesserung der Übertragungsperformance durch Feinpolitur

Die Feinpolitur mit dem Polierbogen bringt eine Verbesserung der Übertragungsperformance von Transmitter zu Receiver oder in der Kabelverbindung von bis zu 0,5 dB gegenüber der Behandlung nur mit dem Schleifbogen allein. Der Arbeitsschritt des Polierens kann allerdings für kurze Übertragungsentfernungen ausgelassen werden.

Abb. 40: Feinpolierte Fasern im Steckverbinder

4 Fehlerbehandlung und Diagnose

4.1 Diagnose-LEDs EK1121-0010, EK1122, EK1122-0008

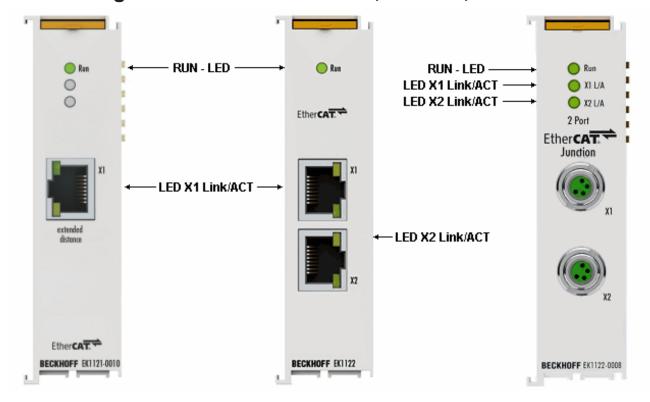


Abb. 41: EK1121-0010, EK1122, EK1122-0008, LEDs

LEDs zur Feldbus-Diagnose

LED		Anzeige	Zustand	Beschreibung
LINK / ACT	grün	aus	-	keine Verbindung auf dem EtherCAT-Strang
(X1/X2)		an	linked	EtherCAT-Teilnehmer angeschlossen
		blinkt	active	Kommunikation mit EtherCAT-Teilnehmer

LED Diagnose EtherCAT State Machine

LED	Farbe	Bedeutung			
RUN grün	Diese LED gibt de	Diese LED gibt den Betriebszustand der Klemme wieder:			
		aus	Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme		
		Einzelblitz	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox- Kommunikation und abweichende Standard-Einstellungen gesetzt		
		blinkend	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync-Managers und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand		
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox-und Prozessdatenkommunikation ist möglich		
		flimmernd	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für Firmware- Updates der Klemme		

4.2 Diagnose-LEDs EK1521, EK1521-0010

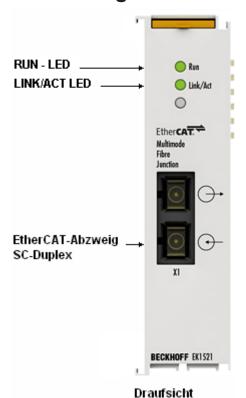
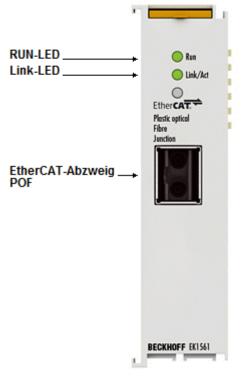


Abb. 42: EK1521 LEDs

LEDs zur Feldbus-Diagnose


LED A		Anzeige	Zustand	Beschreibung
LINK / ACT (X1)	grün	aus	-	keine Verbindung auf dem EtherCAT-Strang
		an	linked	EtherCAT-Teilnehmer angeschlossen
		blinkt	active	Kommunikation mit EtherCAT-Teilnehmer

LED Diagnose EtherCAT State Machine

LED	Farbe	Bedeutung			
RUN grün		Diese LED gibt de	Diese LED gibt den Betriebszustand der Klemme wieder:		
		aus	Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme		
		Einzelblitz	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox- Kommunikation und abweichende Standard-Einstellungen gesetzt		
		blinkend	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync-Managers und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand		
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich		
		flimmernd	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für Firmware- Updates der Klemme		

4.3 Diagnose-LEDs EK1561

Draufsicht

Abb. 43: EK1561 LEDs

LEDs zur Feldbus-Diagnose

LED	Farbe	Anzeige	Zustand	Beschreibung
	grün	aus	-	keine Verbindung auf dem EtherCAT-Strang
(X1)		an	linked	EtherCAT-Teilnehmer angeschlossen
		blinkt	active	Kommunikation mit EtherCAT-Teilnehmer

LED Diagnose EtherCAT State Machine

LED	Farbe	Bedeutung	Bedeutung		
RUN grün		Diese LED gibt	Diese LED gibt den Betriebszustand der Klemme wieder:		
		aus	Zustand der EtherCAT State Machine: INIT = Initialisierung der Klemme		
		Einzelblitz	Zustand der EtherCAT State Machine: PREOP = Funktion für Mailbox-Kommunikation und abweichende Standard-Einstellungen gesetzt		
		blinkend	Zustand der EtherCAT State Machine: SAFEOP = Überprüfung der Kanäle des Sync- Managers und der Distributed Clocks. Ausgänge bleiben im sicheren Zustand		
		an	Zustand der EtherCAT State Machine: OP = normaler Betriebszustand; Mailbox- und Prozessdatenkommunikation ist möglich		
		flimmernd	Zustand der EtherCAT State Machine: BOOTSTRAP = Funktion für Firmware- Updates der Klemme		

5 Montage und Verdrahtung

5.1 Hinweise zum ESD-Schutz

HINWEIS

Zerstörung der Geräte durch elektrostatische Aufladung möglich!

Die Geräte enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können.

- Beim Umgang mit den Bauteilen ist auf elektrostatische Entladung zu achten; außerdem ist das direkte Berühren der Federkontakte (siehe Abbildung) zu vermeiden.
- Der Kontakt mit hoch isolierenden Stoffen (Kunstfasern, Kunststofffolien etc.) sollte beim gleichzeitigen Umgang mit Komponenten vermieden werden.
- Beim Umgang mit den Komponenten ist auf eine sachgemäße Erdung der Umgebung (Arbeitsplatz, Verpackung und Personen) zu achten.
- Jede Busstation muss auf der rechten Seite mit der Endkappe <u>EL9011</u> oder <u>EL9012</u> abgeschlossen werden, um die Schutzart und den ESD-Schutz zu gewährleisten.

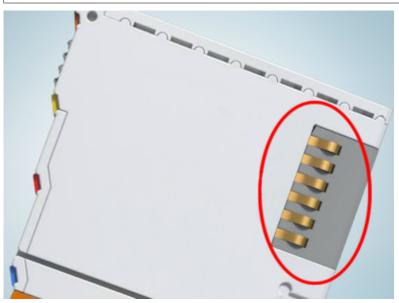


Abb. 44: Federkontakte der Beckhoff I/O-Komponenten

5.2 Explosionsschutz

5.2.1 ATEX - Besondere Bedingungen (erweiterter Temperaturbereich)

↑ WARNUNG

Beachten Sie die besonderen Bedingungen für die bestimmungsgemäße Verwendung von Beckhoff-Feldbuskomponenten mit erweitertem Temperaturbereich (ET) in explosionsgefährdeten Bereichen (Richtlinie 2014/34/EU)!

- Die zertifizierten Komponenten sind in ein geeignetes Gehäuse zu errichten, das eine Schutzart von mindestens IP54 gemäß EN 60079-15 gewährleistet! Dabei sind die Umgebungsbedingungen bei der Verwendung zu berücksichtigen!
- Für Staub (nur die Feldbuskomponenten der Zertifikatsnummer KEMA 10ATEX0075 X Issue 9): Das Gerät ist in ein geeignetes Gehäuse einzubauen, das eine Schutzart von IP54 gemäß EN 60079-31 für Gruppe IIIA oder IIIB und IP6X für Gruppe IIIC bietet, wobei die Umgebungsbedingungen, unter denen das Gerät verwendet wird, zu berücksichtigen sind!
- Wenn die Temperaturen bei Nennbetrieb an den Einführungsstellen der Kabel, Leitungen oder Rohrleitungen höher als 70°C oder an den Aderverzweigungsstellen höher als 80°C ist, so müssen Kabel ausgewählt werden, deren Temperaturdaten den tatsächlich gemessenen Temperaturwerten entsprechen!
- Beachten Sie für Beckhoff-Feldbuskomponenten mit erweitertem Temperaturbereich (ET) beim Einsatz in explosionsgefährdeten Bereichen den zulässigen Umgebungstemperaturbereich von -25 bis 60°C!
- Es müssen Maßnahmen zum Schutz gegen Überschreitung der Nennbetriebsspannung durch kurzzeitige Störspannungen um mehr als 40% getroffen werden!
- Die einzelnen Klemmen dürfen nur aus dem Busklemmensystem gezogen oder entfernt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Die Anschlüsse der zertifizierten Komponenten dürfen nur verbunden oder unterbrochen werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Die Sicherung der Einspeiseklemmen KL92xx/EL92xx dürfen nur gewechselt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Adresswahlschalter und ID-Switche dürfen nur eingestellt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!

Normen

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden durch Übereinstimmung mit den folgenden Normen erfüllt:

- EN 60079-0:2012+A11:2013
- EN 60079-15:2010
- EN 60079-31:2013 (nur für Zertifikatsnummer KEMA 10ATEX0075 X Issue 9)

Kennzeichnung

Die gemäß ATEX-Richtlinie für den explosionsgefährdeten Bereich zertifizierten Beckhoff-Feldbuskomponenten mit erweitertem Temperaturbereich (ET) tragen die folgende Kennzeichnung:

II 3G KEMA 10ATEX0075 X Ex nA IIC T4 Gc Ta: -25 ... +60°C

II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: -25 ... +60°C (nur für Feldbuskomponenten mit Zertifikatsnummer KEMA 10ATEX0075 X Issue 9)

oder

II 3G KEMA 10ATEX0075 X Ex nA nC IIC T4 Gc Ta: -25 ... +60°C

II 3D KEMA 10ATEX0075 X Ex tc IIIC T135°C Dc Ta: -25 ... +60°C (nur für Feldbuskomponenten mit Zertifikatsnummer KEMA 10ATEX0075 X Issue 9)

5.2.2 IECEx - Besondere Bedingungen

MARNUNG

Beachten Sie die besonderen Bedingungen für die bestimmungsgemäße Verwendung von Beckhoff-Feldbuskomponenten in explosionsgefährdeten Bereichen!

- Für Gas: Die Komponenten sind in ein geeignetes Gehäuse zu errichten, das gemäß EN 60079-15 eine Schutzart von IP54 gewährleistet! Dabei sind die Umgebungsbedingungen bei der Verwendung zu berücksichtigen!
- Für Staub (nur für Feldbuskomponenten der Zertifikatsnummer IECEx DEK 16.0078X Issue 3): Die Komponenten sind in einem geeigneten Gehäuse zu errichten, das gemäß EN 60079-31 für die Gruppe IIIA oder IIIB eine Schutzart von IP54 oder für die Gruppe IIIC eine Schutzart von IP6X gewährleistet. Dabei sind die Umgebungsbedingungen bei der Verwendung zu berücksichtigen!
- Die Komponenten dürfen nur in einem Bereich mit mindestens Verschmutzungsgrad 2 gemäß IEC 60664-1 verwendet werden!
- Es sind Vorkehrungen zu treffen, um zu verhindern, dass die Nennspannung durch transiente Störungen von mehr als 119 V überschritten wird!
- Wenn die Temperaturen bei Nennbetrieb an den Einführungsstellen der Kabel, Leitungen oder Rohrleitungen höher als 70°C oder an den Aderverzweigungsstellen höher als 80°C ist, so müssen Kabel ausgewählt werden, deren Temperaturdaten den tatsächlich gemessenen Temperaturwerten entsprechen!
- Beachten Sie für Beckhoff-Feldbuskomponenten beim Einsatz in explosionsgefährdeten Bereichen den zulässigen Umgebungstemperaturbereich!
- Die einzelnen Klemmen dürfen nur aus dem Busklemmensystem gezogen oder entfernt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Die Anschlüsse der zertifizierten Komponenten dürfen nur verbunden oder unterbrochen werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Adresswahlschalter und ID-Switche dürfen nur eingestellt werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!
- Die Frontklappe von zertifizierten Geräten darf nur geöffnet werden, wenn die Versorgungsspannung abgeschaltet wurde bzw. bei Sicherstellung einer nicht-explosionsfähigen Atmosphäre!

Normen

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden durch Übereinstimmung mit den folgenden Normen erfüllt:

- EN 60079-0:2011
- EN 60079-15:2010
- EN 60079-31:2013 (nur für Zertifikatsnummer IECEx DEK 16.0078X Issue 3)

Kennzeichnung

Die gemäß IECEx für den explosionsgefährdeten Bereich zertifizierten Beckhoff-Feldbuskomponenten tragen die folgende Kennzeichnung:

Kennzeichnung für Feldbuskomponenten der Zertifikat-

IECEx DEK 16.0078 X

Nr. IECEx DEK 16.0078X Issue 3:

Ex nA IIC T4 Gc Ex tc IIIC T135°C Dc

Kennzeichnung für Feldbuskomponenten von Zertifikaten mit späteren Ausgaben:

IECEx DEK 16.0078 X Ex nA IIC T4 Gc

5.2.3 Weiterführende Dokumentation zu ATEX und IECEx

Weiterführende Dokumentation zum Explosionsschutz gemäß ATEX und IECEx

Beachten Sie auch die weiterführende Dokumentation

Explosionsschutz für Klemmensysteme

Hinweise zum Einsatz der Beckhoff Klemmensysteme in explosionsgefährdeten Bereichen gemäß ATEX und IECEx,

die Ihnen auf der Beckhoff-Homepage www.beckhoff.de im Download-Bereich Ihres Produktes zum <u>Download</u> zur Verfügung steht!

5.2.4 cFMus - Besondere Bedingungen

MARNUNG

Beachten Sie die besonderen Bedingungen für die bestimmungsgemäße Verwendung von Beckhoff-Feldbuskomponenten in explosionsgefährdeten Bereichen!

- Die Geräte müssen in einem Gehäuse installiert werden, das mindestens die Schutzart IP54 gemäß ANSI/UL 60079-0 (USA) oder CSA C22.2 No. 60079-0 (Kanada) bietet!
- Die Geräte dürfen nur in einem Bereich mit mindestens Verschmutzungsgrad 2, wie in IEC 60664-1 definiert, verwendet werden!
- Es muss ein Transientenschutz vorgesehen werden, der auf einen Pegel von höchstens 140% des Spitzenwertes der Nennspannung an den Versorgungsklemmen des Geräts eingestellt ist.
- Die Stromkreise müssen auf die Überspannungskategorie II gemäß IEC 60664-1 begrenzt sein.
- Die Feldbuskomponenten dürfen nur entfernt oder eingesetzt werden, wenn die Systemversorgung und die Feldversorgung ausgeschaltet sind oder wenn der Ort als ungefährlich bekannt ist.
- Die Feldbuskomponenten dürfen nur getrennt oder angeschlossen werden, wenn die Systemversorgung abgeschaltet ist oder wenn der Einsatzort als nicht explosionsgefährdet bekannt ist.

Standards

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden durch Übereinstimmung mit den folgenden Normen erfüllt:

M20US0111X (US):

- FM Class 3600:2018
- FM Class 3611:2018
- FM Class 3810:2018
- ANSI/UL 121201:2019
- ANSI/ISA 61010-1:2012
- ANSI/UL 60079-0:2020
- ANSI/UL 60079-7:2017

FM20CA0053X (Canada):

- CAN/CSA C22.2 No. 213-17:2017
- CSA C22.2 No. 60079-0:2019
- CAN/CSA C22.2 No. 60079-7:2016
- CAN/CSA C22.2 No.61010-1:2012

Kennzeichnung

Die gemäß cFMus für den explosionsgefährdeten Bereich zertifizierten Beckhoff-Feldbuskomponenten tragen die folgende Kennzeichnung:

FM20US0111X (US): Class I, Division 2, Groups A, B, C, D

Class I, Zone 2, AEx ec IIC T4 Gc

FM20CA0053X (Canada): Class I, Division 2, Groups A, B, C, D

Ex ec T4 Gc

5.2.5 Weiterführende Dokumentation zu cFMus

HINWEIS

Weiterführende Dokumentation zum Explosionsschutz gemäß cFMus

Beachten Sie auch die weiterführende Dokumentation

Control Drawing I/O, CX, CPX

Anschlussbilder und Ex-Kennzeichnungen,

die Ihnen auf der Beckhoff-Homepage www.beckhoff.de im Download-Bereich Ihres Produktes zum <u>Download</u> zur Verfügung steht!

5.3 UL-Hinweise

⚠ VORSICHT

Application

The modules are intended for use with Beckhoff's UL Listed EtherCAT System only.

⚠ VORSICHT

Examination

For cULus examination, the Beckhoff I/O System has only been investigated for risk of fire and electrical shock (in accordance with UL508 and CSA C22.2 No. 142).

⚠ VORSICHT

For devices with Ethernet connectors

Not for connection to telecommunication circuits.

Grundlagen

UL-Zertifikation nach UL508. Solcherart zertifizierte Geräte sind gekennzeichnet durch das Zeichen:

5.4 Tragschienenmontage

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Das Busklemmen-System ist für die Montage in einem Schaltschrank oder Klemmkasten vorgesehen.

Montage

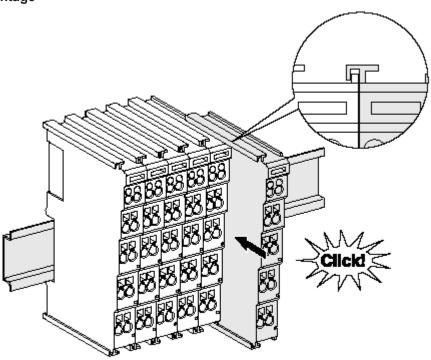


Abb. 45: Montage auf Tragschiene

Die Buskoppler und Busklemmen werden durch leichten Druck auf handelsübliche 35 mm-Tragschienen (Hutschienen nach EN 60715) aufgerastet:

- 1. Stecken Sie zuerst den Feldbuskoppler auf die Tragschiene.
- 2. Auf der rechten Seite des Feldbuskopplers werden nun die Busklemmen angereiht. Stecken Sie dazu die Komponenten mit Nut und Feder zusammen und schieben Sie die Klemmen gegen die Tragschiene, bis die Verriegelung hörbar auf der Tragschiene einrastet. Wenn Sie die Klemmen erst auf die Tragschiene schnappen und dann nebeneinander schieben, ohne dass Nut und Feder ineinander greifen, wird keine funktionsfähige Verbindung hergestellt! Bei richtiger Montage darf kein nennenswerter Spalt zwischen den Gehäusen zu sehen sein.

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen und Koppler reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung von Tragschienen mit einer Höhe von 7,5 mm unter den Klemmen und Kopplern flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

Demontage

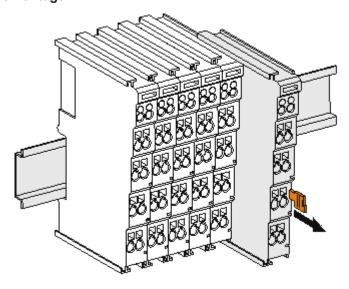


Abb. 46: Demontage von Tragschiene

Jede Klemme wird durch eine Verriegelung auf der Tragschiene gesichert, die zur Demontage gelöst werden muss:

- 1. Ziehen Sie die Klemme an ihren orangefarbigen Laschen ca. 1 cm von der Tragschiene herunter. Dabei wird die Tragschienenverriegelung dieser Klemme automatisch gelöst und Sie können die Klemme nun ohne großen Kraftaufwand aus dem Busklemmenblock herausziehen.
- 2. Greifen Sie dazu mit Daumen und Zeigefinger die entriegelte Klemme gleichzeitig oben und unten an den Gehäuseflächen und ziehen Sie sie aus dem Busklemmenblock heraus.

Verbindungen innerhalb eines Busklemmenblocks

Die elektrischen Verbindungen zwischen Buskoppler und Busklemmen werden durch das Zusammenstecken der Komponenten automatisch realisiert:

- Die sechs Federkontakte des K-Bus/E-Bus übernehmen die Übertragung der Daten und die Versorgung der Busklemmenelektronik.
- Die Powerkontakte übertragen die Versorgung für die Feldelektronik und stellen so innerhalb des Busklemmenblocks eine Versorgungsschiene dar. Die Versorgung der Powerkontakte erfolgt über Klemmenstellen am Buskoppler (bis 24 V) oder für höhere Spannungen über Einspeiseklemmen.

Powerkontakte

Beachten Sie bei der Projektierung eines Busklemmenblocks die Kontaktbelegungen der einzelnen Busklemmen, da einige Typen (z.B. analoge Busklemmen oder digitale 4-Kanal-Busklemmen) die Powerkontakte nicht oder nicht vollständig durchschleifen. Einspeiseklemmen (KL91xx, KL92xx bzw. EL91xx, EL92xx) unterbrechen die Powerkontakte und stellen so den Anfang einer neuen Versorgungsschiene dar.

PE-Powerkontakt

Der Powerkontakt mit der Bezeichnung PE kann als Schutzerde eingesetzt werden. Der Kontakt ist aus Sicherheitsgründen beim Zusammenstecken voreilend und kann Kurzschlussströme bis 125 A ableiten.

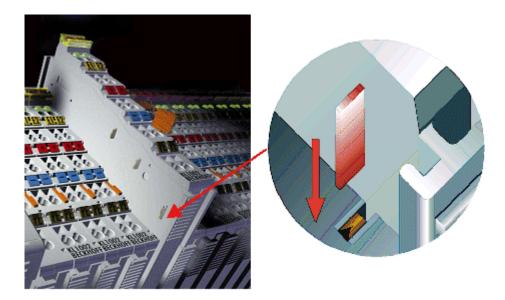


Abb. 47: Linksseitiger Powerkontakt

HINWEIS

Beschädigung des Gerätes möglich

Beachten Sie, dass aus EMV-Gründen die PE-Kontakte kapazitiv mit der Tragschiene verbunden sind. Das kann bei der Isolationsprüfung zu falschen Ergebnissen und auch zur Beschädigung der Klemme führen (z. B. Durchschlag zur PE-Leitung bei der Isolationsprüfung eines Verbrauchers mit 230 V Nennspannung). Klemmen Sie zur Isolationsprüfung die PE-Zuleitung am Buskoppler bzw. der Einspeiseklemme ab! Um weitere Einspeisestellen für die Prüfung zu entkoppeln, können Sie diese Einspeiseklemmen entriegeln und mindestens 10 mm aus dem Verbund der übrigen Klemmen herausziehen.

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag!

Der PE-Powerkontakt darf nicht für andere Potentiale verwendet werden!

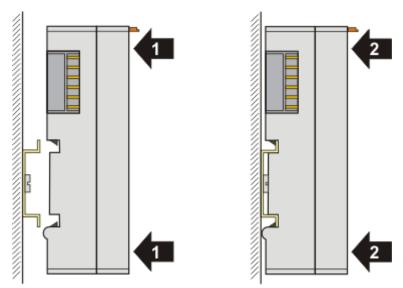
5.5 Montage und Demontage - Frontentriegelung oben

Die Klemmenmodule werden mit Hilfe einer 35 mm Tragschiene (z.B. Hutschiene TH 35-15) auf der Montagefläche befestigt.

Tragschienenbefestigung

Der Verriegelungsmechanismus der Klemmen reicht in das Profil der Tragschiene hinein. Achten Sie bei der Montage der Komponenten darauf, dass der Verriegelungsmechanismus nicht in Konflikt mit den Befestigungsschrauben der Tragschiene gerät. Verwenden Sie zur Befestigung der empfohlenen Tragschienen unter den Klemmen flache Montageverbindungen wie Senkkopfschrauben oder Blindnieten.

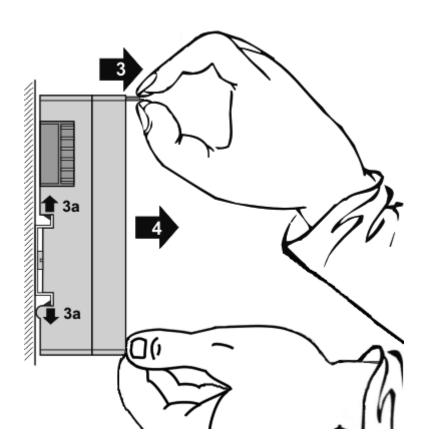
⚠ WARNUNG


Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Montage

· Montieren Sie die Tragschiene an der vorgesehenen Montagestelle



und drücken Sie (1) das Klemmenmodul gegen die Tragschiene, bis es auf der Tragschiene einrastet (2).

• Schließen Sie die Leitungen an.

Demontage

- Entfernen Sie alle Leitungen.
- Ziehen Sie mit Daumen und Zeigefinger die orange Entriegelungslasche (3) zurück. Dabei ziehen sich über einen internen Mechanismus die beiden Rastnasen (3a) an der Hutschiene ins Klemmenmodul zurück.

• Ziehen Sie (4) das Klemmenmodul von der Montagefläche weg. Vermeiden Sie ein Verkanten; stabilisieren Sie das Modul ggf. mit der freien Hand

5.6 Einbaulagen

HINWEIS

Einschränkung von Einbaulage und Betriebstemperaturbereich

Entnehmen Sie den technischen Daten zu einer Klemme, ob sie Einschränkungen bei Einbaulage und/oder Betriebstemperaturbereich unterliegt. Sorgen Sie bei der Montage von Klemmen mit erhöhter thermischer Verlustleistung dafür, dass im Betrieb oberhalb und unterhalb der Klemmen ausreichend Abstand zu anderen Komponenten eingehalten wird, so dass die Klemmen ausreichend belüftet werden!

Optimale Einbaulage (Standard)

Für die optimale Einbaulage wird die Tragschiene waagerecht montiert und die Anschlussflächen der EL-/KL-Klemmen weisen nach vorne (siehe Abb. "Empfohlene Abstände bei Standard-Einbaulage"). Die Klemmen werden dabei von unten nach oben durchlüftet, was eine optimale Kühlung der Elektronik durch Konvektionslüftung ermöglicht. Bezugsrichtung "unten" ist hier die Richtung der Erdbeschleunigung.

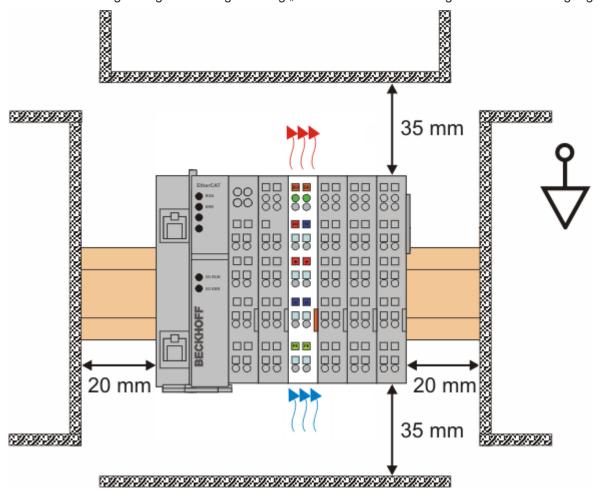


Abb. 48: Empfohlene Abstände bei Standard-Einbaulage

Die Einhaltung der Abstände nach Abb. "Empfohlene Abstände bei Standard-Einbaulage" wird empfohlen.

Weitere Einbaulagen

Alle anderen Einbaulagen zeichnen sich durch davon abweichende, räumliche Lage der Tragschiene aus, siehe Abb. "Weitere Einbaulagen".

Auch in diesen Einbaulagen empfiehlt sich die Anwendung der oben angegebenen Mindestabstände zur Umgebung.

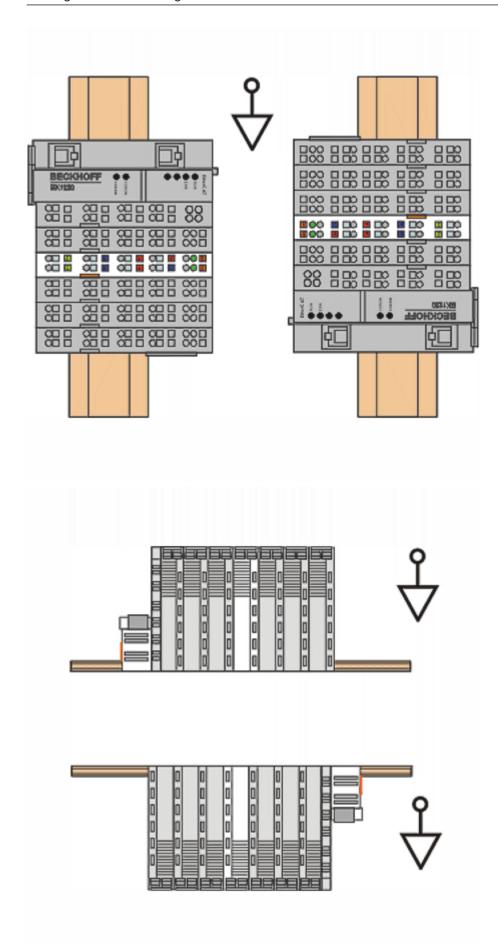


Abb. 49: Weitere Einbaulagen

5.7 Anschlusstechnik

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Übersicht

Mit verschiedenen Anschlussoptionen bietet das Busklemmensystem eine optimale Anpassung an die Anwendung:

- Die Klemmen der Serien ELxxxx und KLxxxx mit Standardverdrahtung enthalten Elektronik und Anschlussebene in einem Gehäuse.
- Die Klemmen der Serien ESxxxx und KSxxxx haben eine steckbare Anschlussebene und ermöglichen somit beim Austausch die stehende Verdrahtung.
- Die High-Density-Klemmen (HD-Klemmen) enthalten Elektronik und Anschlussebene in einem Gehäuse und haben eine erhöhte Packungsdichte.

Standardverdrahtung (ELxxxx / KLxxxx)

Abb. 50: Standardverdrahtung

Die Klemmen der Serien ELxxxx und KLxxxx integrieren die schraublose Federkrafttechnik zur schnellen und einfachen Verdrahtung.

Steckbare Verdrahtung (ESxxxx / KSxxxx)

Abb. 51: Steckbare Verdrahtung

Die Klemmen der Serien ESxxxx und KSxxxx enthalten eine steckbare Anschlussebene.

Montage und Verdrahtung werden wie bei den Serien ELxxxx und KLxxxx durchgeführt.

Im Servicefall erlaubt die steckbare Anschlussebene, die gesamte Verdrahtung als einen Stecker von der Gehäuseoberseite abzuziehen.

Das Unterteil kann über das Betätigen der Entriegelungslasche aus dem Klemmenblock herausgezogen werden.

Die auszutauschende Komponente wird hineingeschoben und der Stecker mit der stehenden Verdrahtung wieder aufgesteckt. Dadurch verringert sich die Montagezeit und ein Verwechseln der Anschlussdrähte ist ausgeschlossen.

Die gewohnten Maße der Klemme ändern sich durch den Stecker nur geringfügig. Der Stecker trägt ungefähr 3 mm auf; dabei bleibt die maximale Höhe der Klemme unverändert.

Eine Lasche für die Zugentlastung des Kabels stellt in vielen Anwendungen eine deutliche Vereinfachung der Montage dar und verhindert ein Verheddern der einzelnen Anschlussdrähte bei gezogenem Stecker.

Leiterquerschnitte von 0,08 mm² bis 2,5 mm² können weiter in der bewährten Federkrafttechnik verwendet werden.

Übersicht und Systematik in den Produktbezeichnungen der Serien ESxxxx und KSxxxx werden wie von den Serien ELxxxx und KLxxxx bekannt weitergeführt.

High-Density-Klemmen (HD-Klemmen)

Abb. 52: High-Density-Klemmen

Die Klemmen dieser Baureihe mit 16 Klemmstellen zeichnen sich durch eine besonders kompakte Bauform aus, da die Packungsdichte auf 12 mm doppelt so hoch ist wie die der Standard-Busklemmen. Massive und mit einer Aderendhülse versehene Leiter können ohne Werkzeug direkt in die Federklemmstelle gesteckt werden.

Verdrahtung HD-Klemmen

Die High-Density-Klemmen der Serien ELx8xx und KLx8xx unterstützen keine steckbare Verdrahtung.

Ultraschallverdichtete Litzen

Ultraschallverdichtete Litzen

An die Standard- und High-Density-Klemmen können auch ultraschallverdichtete (ultraschallverschweißte) Litzen angeschlossen werden. Beachten Sie die Tabellen zum Leitungsquerschnitt [▶ 74]!

5.8 Verdrahtung

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das Busklemmen-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Busklemmen beginnen!

Klemmen für Standardverdrahtung ELxxxx/KLxxxx und für steckbare Verdrahtung ESxxxx/KSxxxx

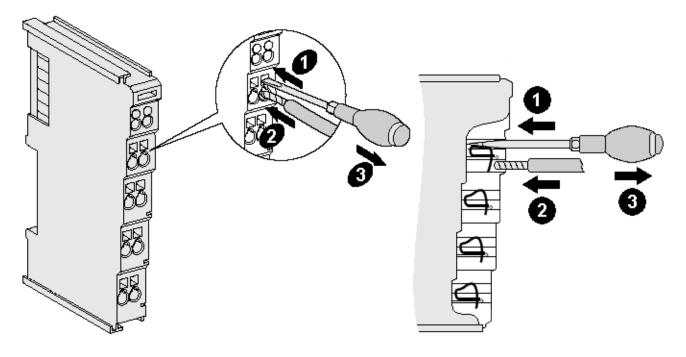


Abb. 53: Anschluss einer Leitung an eine Klemmstelle

Bis zu acht Klemmstellen ermöglichen den Anschluss von massiven oder feindrähtigen Leitungen an die Busklemme. Die Klemmstellen sind in Federkrafttechnik ausgeführt. Schließen Sie die Leitungen folgendermaßen an (vgl. Abb. "Anschluss einer Leitung an eine Klemmstelle":

- 1. Öffnen Sie eine Klemmstelle, indem Sie einen Schraubendreher gerade bis zum Anschlag in die viereckige Öffnung über der Klemmstelle drücken. Den Schraubendreher dabei nicht drehen oder hin und her bewegen (nicht hebeln).
- 2. Der Draht kann nun ohne Widerstand in die runde Klemmenöffnung eingeführt werden.
- 3. Durch Entfernen des Schraubendrehes schließt sich die Klemmstelle automatisch und hält den Draht sicher und dauerhaft fest.

Den zulässigen Leiterquerschnitt entnehmen Sie der nachfolgenden Tabelle:

Klemmengehäuse	ELxxxx, KLxxxx	ESxxxx, KSxxxx
Leitungsquerschnitt (massiv)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (feindrähtig)	0,08 2,5 mm ²	0,08 2,5 mm ²
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 1,5 mm²	0,14 1,5 mm ²
Abisolierlänge	8 9 mm	9 10 mm

High-Density-Klemmen (HD-Klemmen [▶ 72]) mit 16 Klemmstellen

Bei den HD-Klemmen erfolgt der Leiteranschluss bei massiven Leitern werkzeuglos in Direktstecktechnik. das heißt, der Leiter wird nach dem Abisolieren einfach in die Klemmstelle gesteckt. Das Lösen der Leitung erfolgt, wie bei den Standardklemmen, über die Kontakt-Entriegelung mit Hilfe eines Schraubendrehers. Den zulässigen Leiterguerschnitt entnehmen Sie der nachfolgenden Tabelle:

Klemmengehäuse	HD-Gehäuse	
Leitungsquerschnitt (massiv)	0,08 1,5 mm ²	
Leitungsquerschnitt (feindrähtig)	0,25 1,5 mm ²	
Leitungsquerschnitt (Aderleitung mit Aderendhülse)	0,14 0,75 mm ²	
Leitungsquerschnitt (ultraschallverdichtete Litze)	nur 1,5 mm² (siehe <u>Hinweis [▶ 72]</u>)	
Abisolierlänge	8 9 mm	

5.9 EtherCAT-Verkabelung - Drahtgebunden

Die zulässige Leitungslänge zwischen zwei EtherCAT-Geräten darf maximal 100 Meter betragen. Dies resultiert aus der FastEthernet-Technologie, die vor allem aus Gründen der Signaldämpfung über die Leitungslänge eine maximale Linklänge von 5 m + 90 m + 5 m erlaubt, wenn Leitungen mit entsprechenden Eigenschaften verwendet werden. Siehe dazu auch die Auslegungsempfehlungen zur Infrastruktur für EtherCAT/Ethernet.

Kabel und Steckverbinder

Verwenden Sie zur Verbindung von EtherCAT-Geräten nur Ethernet-Verbindungen (Kabel + Stecker), die mindestens der Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801 entsprechen. EtherCAT nutzt vier Adern des Kabels für die Signalübertragung.

EtherCAT verwendet beispielsweise RJ45-Steckverbinder. Die Kontaktbelegung ist zum Ethernet-Standard (ISO/IEC 8802-3) kompatibel.

Pin	Aderfarbe	Signal	Beschreibung
1	gelb	TD+	Transmission Data +
2	orange	TD-	Transmission Data -
3	weiß	RD+	Receiver Data +
6	blau	RD-	Receiver Data -

Aufgrund der automatischen Kabelerkennung (Auto-Crossing) können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte als auch gekreuzte Leitungen (Cross-Over) verwendet werden.

Empfohlene Kabel

Es wird empfohlen, die entsprechenden Beckhoff-Komponenten zu verwenden, z. B.

- Kabelsätze ZK1090-9191-xxxx bzw.
- feldkonfektionierbare RJ45 Stecker ZS1090-0005 oder
- feldkonfektionierbare Ethernet Leitung ZB9010, ZB9020.

Geeignete Kabel zur Verbindung von EtherCAT-Geräten finden Sie auf der Beckhoff Website!

E-Bus-Versorgung

Ein Buskoppler kann die an ihm angefügten EL-Klemmen mit der E-Bus-Systemspannung von 5 V versorgen, in der Regel ist ein Koppler dabei bis zu 2 A belastbar (siehe Dokumentation des jeweiligen Gerätes).

Zu jeder EL-Klemme ist die Information, wie viel Strom sie aus der E-Bus-Versorgung benötigt, online und im Katalog verfügbar. Benötigen die angefügten Klemmen mehr Strom als der Koppler liefern kann, sind an entsprechender Position im Klemmenstrang Einspeiseklemmen (z. B. EL9410) zu setzen.

Im TwinCAT System Manager wird der berechnete, theoretische maximale E-Bus-Strom angezeigt. Eine Unterschreitung wird durch einen negativen Summenbetrag und Ausrufezeichen markiert, vor einer solchen Stelle ist eine Einspeiseklemme zu setzen.

74 Version: 3.9.0 EK112x, EK15xx

Abb. 54: System Manager Stromberechnung

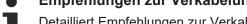
HINWEIS CONTROL OF THE PROPERTY OF THE PROPERT
Fehlfunktion möglich!
Die E-Bus-Versorgung aller EtherCAT-Klemmen eines Klemmenblocks muss aus demselben
Massepotential erfolgen!

5.10 M8-Anschluss - Verkabelung

Eine Auflistung der EtherCAT-Kabel, Powerkabel, Sensorkabel, Ethernet-/EtherCAT-Steckverbinder sowie feldkonfektionierbare Steckverbinder finden Sie unter dem folgenden Link: https://www.beckhoff.com/de-de/produkte/i-o/zubehoer/

Die dazugehörigen Datenblätter finden Sie unter dem folgenden Link: https://www.beckhoff.com/de-de/support/downloadfinder/datenblaetter/

EtherCAT-Kabel


Abb. 55: ZK1090-3131-0xxx

Verwenden Sie zur Verbindung von EtherCAT-Geräten nur geschirmte Ethernet-Kabel, die mindestens der **Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801** entsprechen.

Empfehlungen zur Verkabelung

Detailliert Empfehlungen zur Verkabelung von EtherCAT können Sie der Dokumentation "Auslegungsempfehlungen zur Infrastruktur für EtherCAT/Ethernet" entnehmen, die auf www.beckhoff.de zum Download zur Verfügung steht.

EtherCAT nutzt vier Adern der Kabel für die Signalübertragung.

Aufgrund der automatischen Leitungserkennung (Auto-Crossing) können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte, wie gekreuzte Kabel (Cross-Over) verwenden.

M8 - Anschlussbelegung

Signal	Beschreibung	Pin (M8)
Tx+	Transmit Data+	1
Tx-	Transmit Data-	4
Rx+	Receive Data+	2
Rx-	Receive Data-	3
Shield	Shielding	Gehäuse

5.11 Anzugsdrehmoment für die Steckverbinder

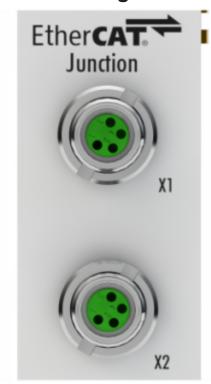


Abb. 56: X1 und X2 des EK1122-0008

Für die Verwendung der EtherCAT-Anschlüsse M8 des EK1122-0008 ist folgendes zu beachten:

M8-Steckverbinder

Es wird empfohlen die M8-Steckverbinder mit einem Drehmoment von **0,4 Nm** festzuziehen. Bei Verwendung des Drehmoment-Schraubendrehers <u>ZB8800</u> ist auch ein max. Drehmoment von **0,5 Nm** zulässig.

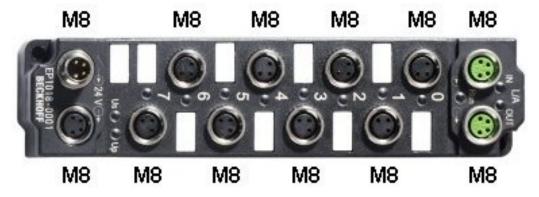


Abb. 57: EtherCAT Box mit M8-Steckverbindern

5.12 Hinweis zur Spannungsversorgung

MARNUNG

Spannungsversorgung aus SELV- / PELV-Netzteil!

Zur Versorgung dieses Geräts müssen SELV- / PELV-Stromkreise (Sicherheitskleinspannung, "safety extra-low voltage" / Schutzkleinspannung, "protective extra-low voltage") nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

5.13 Speisung, Potenzialgruppen

Spannungsversorgung Buskoppler

Die Buskoppler benötigen zum Betrieb eine 24 V Gleichspannung. Der Anschluss findet über die oberen Federkraftklemmen mit der Bezeichnung 24 V und 0 V statt. Die Versorgungsspannung wird sowohl von der Elektronik des Buskopplers als auch von der direkten Spannungserzeugung für den E-Bus genutzt. Die Spannungserzeugung für den E-Bus findet in einem DC/DC-Wandler ohne galvanische Trennung statt.

Die EK1xxx versorgen den E-Bus mit max. 2.000 mA E-Bus-Strom. Wird durch die angefügten Klemmen mehr Strom benötigt, sind Einspeiseklemmen zu setzen.

Einspeisung Powerkontakte

Die unteren sechs Anschlüsse mit Federkraftklemmen können zur Einspeisung der Peripherieversorgung benutzt werden. Die Federkraftklemmen sind paarweise mit einem Powerkontakt verbunden. Die Einspeisung zu den Powerkontakten besitzt keine Verbindung zur Spannungsversorgung der Buskoppler. Die Auslegung der Einspeisung lässt Spannungen bis zu 24 V zu. Die paarweise Anordnung und die elektrische Verbindung zwischen den Speiseklemmkontakten ermöglicht das Durchschleifen der Anschlussdrähte zu unterschiedlichen Klemmpunkten. Die Strombelastung über den Powerkontakten darf 10 A nicht dauerhaft überschreiten, die Zuleitung ist deshalb mit 10 A (träge) abzusichern.

Powerkontakte

An der rechten Seitenfläche des Buskopplers befinden sich drei Federkontakte der Powerkontaktverbindungen. Die Federkontakte sind in Schlitzen verborgen um den Berührungsschutz sicherzustellen. Durch das Anreihen einer Busklemme werden die Messerkontakte auf der linken Seite der Busklemme mit den Federkontakten verbunden. Die Nut/Federführung an der Ober- und Unterseite der Buskoppler und Busklemmen garantiert sichere Führung der Powerkontakte.

Die Strombelastung der Powerkontakte darf 10 A nicht dauerhaft überschreiten.

Potenzialtrennung

Die Buskoppler arbeiten mit drei unabhängigen Potenzialgruppen. Die Versorgungsspannung speist galvanisch getrennt die E-Bus-Elektronik im Buskoppler und den E-Bus selbst. Aus der Versorgungsspannung wird weiter die Betriebsspannung für den Betrieb des Feldbusses erzeugt.

Anmerkung: Alle Busklemmen haben eine galvanische Trennung zum E-Bus. Der E-Bus ist dadurch vollständig galvanisch gekapselt.

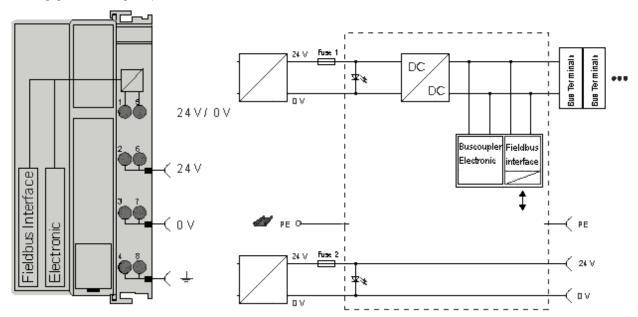


Abb. 58: Potenzialschaltbild EKxxxx

Erdungskonzept

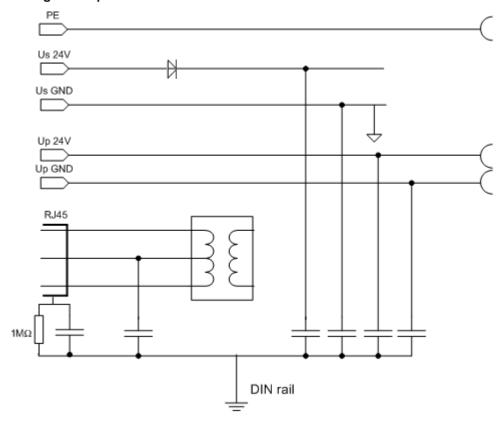


Abb. 59: Erdungskonzept EKxxxx

Absicherung

Versorgung des Kopplers, Sicherung 1:

in Abhängigkeit von der benötigten Stromaufnahme und damit der konfigurierten Klemmen typ. max. 1 A

Powerkontakte, Sicherung 2:

max. 10 A (träge) zulässig

Die Elektronik des Kopplers und die Powerkontakte können zusammen aus der gleichen Quelle versorgt werden, die Sicherung ist dann entsprechend auf max. 10 A zu dimensionieren.

5.14 Positionierung von passiven Klemmen

Hinweis zur Positionierung von passiven Klemmen im Busklemmenblock

EtherCAT-Klemmen (ELxxxx / ESxxxx), die nicht aktiv am Datenaustausch innerhalb des Busklemmenblocks teilnehmen, werden als passive Klemmen bezeichnet. Diese Klemmen sind an der nicht vorhandenen Stromaufnahme aus dem E-Bus zu erkennen. Um einen optimalen Datenaustausch zu gewährleisten, dürfen nicht mehr als zwei passive Klemmen direkt aneinander gereiht werden!

Beispiele für die Positionierung von passiven Klemmen (hell eingefärbt)

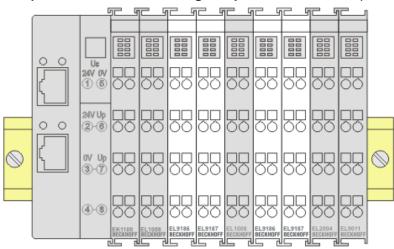


Abb. 60: Korrekte Positionierung

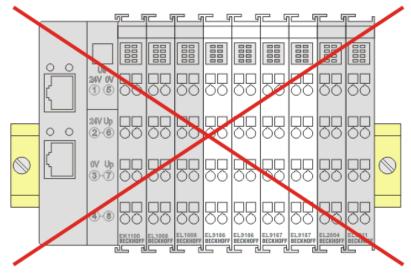


Abb. 61: Inkorrekte Positionierung

5.15 Entsorgung

Die mit einer durchgestrichenen Abfalltonne gekennzeichneten Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

6 Grundlagen der Kommunikation

6.1 EtherCAT-Grundlagen

Grundlagen zum Feldbus EtherCAT entnehmen Sie bitte der EtherCAT System-Dokumentation.

6.2 Funktionsgrundlagen EtherCAT-Abzweige

Es sind einige Beckhoff EtherCAT-Geräte verfügbar, die für Abzweige im EtherCAT-Strang verwendet werden können. Dazu gehören EK1122, EK1521, EP1122 oder auch CU112x. Aufgrund der gleichen Systematik und ähnlichen technischen Eigenschaften dieser Geräte wird in den folgenden Beispielen nur der EK1122 verwendet.

EtherCAT-Handling in den Slaves

Beim Einsatz von EtherCAT als Feldbusprotokoll sind viele verschiedene Bustopologien anwendbar: Linie-, Stern-, Baumtopologie und mit Redundanz-Unterstützung sogar Ringtopologie. Die einfachste Topologie ist die Linientopologie, bei der jeder EtherCAT-Slave die Daten an den *einzigen* nächsten weiterreicht, siehe folgende Abbildung *EtherCAT Linientopologie*.

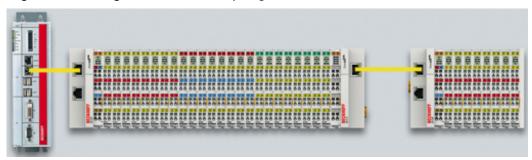


Abb. 62: EtherCAT Linientopologie

Beim Einsatz von z. B. EtherCAT-Kopplern EK1100 ist auch ein Abzweig und damit eine Art Baumtopologie möglich, siehe folgende Abbildung *Linientopologie mit Erweiterungen*.

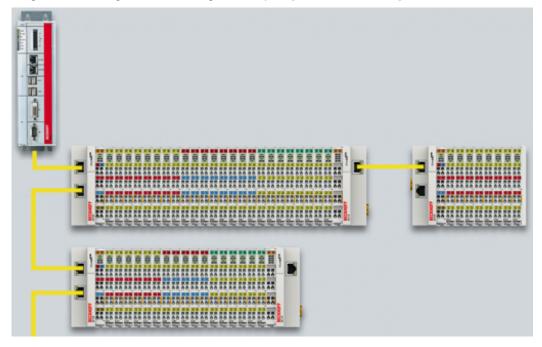


Abb. 63: Linientopologie mit Erweiterungen

Grundlegend dabei ist, dass intern der oder die Ethernet-Frame(s) mit den EtherCAT-Protokolldaten weiterhin in einem logischen Ring befördert werden:

- · der EtherCAT-Master sendet den Frame auf den beiden Hin-Leitungen des Ethernet-Kabels aus
- · dieser Frame durchläuft einmalig jeden Slave
- · wird vom logisch letzten Slave dann gewendet
- und auf den beiden Rück-Leitungen des Ethernet-Kabels dann ohne weiteres Processing wieder durch jeden EtherCAT-Slave zum Master zurückbefördert

Bei kurzen Zykluszeiten von z. B. 50 µs sind dabei mindestens 20.000 Ethernet Frames je Sekunde im dem EtherCAT-System unterwegs, zuzüglich azyklischer Organisationsframes. Der Master wartet dabei auf die Rückkehr der ausgesandten Frames, die z. B. die Eingangsdaten der Teilnehmer zum Master zurücktransportieren. Die Weiterleitung der Telegramme von einem Slave zum nächsten ist dabei linkbasiert: nur wenn ein "Link"-Signal zum nächsten Teilnehmer besteht, sendet ein EtherCAT-Slave einen Frame weiter. Im Normalfall ist davon auszugehen, dass der nachfolgende Teilnehmer jedes EtherCAT-Telegramm korrekt weiterbearbeitet und am Schluss ggf. zurücksendet bzw. weiterleitet.

Entscheidend bei der Weiterleitung von EtherCAT-Telegrammen ist also, dass ein Link-Signal erst dann von einem Slave zum anderen gemeldet wird, wenn beide wirklich bereit sind in Echtzeit an der Datenverarbeitung teilzunehmen. Konkret darf ein EtherCAT-Slave also erst dann den jeweiligen Ethernet-Port öffnen, wenn er umgehend einen Ethernet-Frame annehmen und weiterleiten kann.

Um üblichen Ethernet-Verkehr weiterzuleiten wird in der Regel ein Switch oder Router eingesetzt. Treten dort Kollisionen oder Frame-Verluste auf, wird dies von übergeordneten Protokollschichten (z. B. TCP) durch Frame-Wiederholung ausgeglichen. Diese Betriebsart ist bei EtherCAT aufgrund der kurzen Zykluszeiten und des Echtzeit-Anspruchs standardmäßig nicht im Einsatz. Einige Ethernet-Geräte wie z. B. spezielle Switche melden bereits einen Link zur Gegenstelle, obwohl sie erst in einigen Millisekunden zur Datenverarbeitung bereit sind. Besonders auffällig wird dieses Verhalten bei Medienkonvertern von 100Base-TX (Kupfer) nach 100Base-Fx (Lichtwellenleiter), die je nach Einstellung auf der Kupferseite zum vorhergehenden EtherCAT-Slave einen Link melden, obwohl die LWL-Verbindung unterbrochen ist.

Deshalb ist die schnelle Link-Detektion ein zentraler Bestandteil eines jeden ESC (EtherCAT Slave Controller, Hardwareverarbeitungseinheit des EtherCAT-Protokolls). Laut EtherCAT-Spezifikation kann ein ESC über ein bis vier Ports verfügen, die er von sich aus kontrolliert. Öffnet er einen Port, ist dort abgehender und ankommender Ethernet-Verkehr möglich. Die Datenflussrichtung in einem vollausgebauten ESC ist in Abb. *Datenflussrichtung im ESC* gezeigt - dabei werden die Daten in den EtherCAT-Datagrammen nur zwischen Port 0 (A) und 3 (D) in der EtherCAT-Processing-Unit verarbeitet.

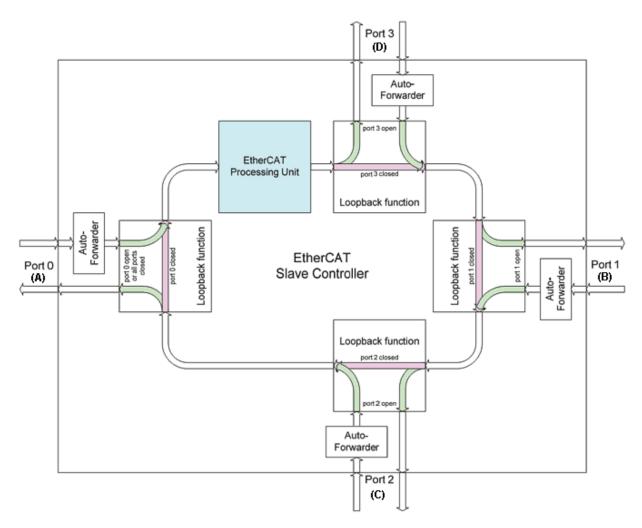


Abb. 64: Datenflussrichtung im ESC

Idealerweise findet die Link-Erkennung und damit das Port-Handling im ESC so schnell statt, dass selbst bei 100 µs Zykluszeit kein Lost-Frame-Ereignis auftritt. Dennoch ist zumindest ein verlorener Frame nie auszuschließen, falls nämlich eine Verbindung getrennt wird, während ein Ethernet-Frame gerade genau auf diesem Kabel bzw. in dem Bussegment hinter der Trennstelle unterwegs ist.

Umsetzung: EL-Klemme

Ein üblicher EtherCAT-Slave wie z. B. Beckhoff EL-Klemmen verfügt über zwei Ports:

- einen für ankommende Frames (Port 0 [A])
- und einen für abgehende Frames (z. B. Port [D]).

Die anderen beiden Ports sind intern im ESC geschlossen. Ein EtherCAT-Telegramm gelangt über Port 0 (A)/oben zur Processing-Unit und wird dann über Port 3 (D)/links zum nächsten Slave weitergereicht, falls ein Link zu diesem besteht - s. grüne Pfeile. Das ist dann der Fall, wenn rechts eine weitere EL-Klemme gesteckt ist.

Besteht kein Link, wird der Frame über den violetten Weg zum Port 1(B) weitergereicht. Dieser und auch Port 2 (C) haben keinen Link und reichen den Frame damit zum Port 0 (A) zurück, wo der Frame über den gleichen Ethernet-Port über den er am Slave ankam, diesen wieder verlässt. Das ist der Fall, wenn die betrachtete Klemme als Endklemme fungiert.

Ein EtherCAT-Teilnehmer mit nur einem Port ist somit nur begrenzt einsetzbar, da er nur als End-Teilnehmer eingesetzt werden kann.

Umsetzung: EK1100 EtherCAT Koppler

Im EtherCAT-Koppler EK1100 werden drei von den vier verfügbaren Ports genutzt und damit ein Anschluss nach rechts zu Klemmen und über eine RJ45-Buchse zu weiteren Kopplern ermöglicht, vgl. Abb. "Linientopologie mit Erweiterungen [▶ 82]". Die Processing-Unit wird im EK1100 nicht zum Prozessdatenaustausch genutzt.

Umsetzung: EK1121-0010 EtherCAT Abzweig, Extended Distance

Im Abzweig EK1121-0010 können wie im EK1100 drei Ports des ESC verbunden werden. Zwei über den klemmeninternen E-Bus und einer über die RJ45-Buchse mit Ethernet-Physik.

Umsetzung: EK1122 EtherCAT Abzweig

Im EK1122 können alle vier Ports des ESC verbunden werden. Zwei über den klemmeninternen E-Bus und zwei über die RJ45-Buchsen mit Ethernet-Physik. Im TwinCAT System Manager werden die Link-Status der Ports 0, 1, 2 und 3 über die Online-Anzeige mitgeteilt - dort werden sie mit Port A, B, C und D bezeichnet, s. Abb. "Topologie Anzeige bei unterbrochener Leitung [▶ 88]".

Umsetzung: EK1521/EK1521-0010/EK1561 EtherCAT Abzweig

In o. g. Abzweigen können wie im EK1100 drei Ports des ESC verbunden werden. Zwei über den klemmeninternen E-Bus und einer über die SC-Buchse/Versatile Link per LWL-Leitung/POF-Leitung.

Umsetzung: CU1123-00x0 EtherCAT Abzweig

In den CU1123-00x0 können drei der vier verfügbaren Ports des ESC über RJ45-Buchsen verbunden werden.

Umsetzung: CU1124 EtherCAT Abzweig

Im CU1124 können alle vier verfügbaren Ports des ESC über RJ45-Buchsen verbunden werden.

Umsetzung: CU1128 EtherCAT Abzweig

Im CU1128 sind drei ESC integriert, es können somit insgesamt acht Ports durch Anwender belegt werden. Die drei ESC sind untereinander über E-Bus verbunden.

Beispielkonfiguration mit EK1122

Im Folgenden wird beispielhaft das Linkverhalten unter TwinCAT und seine Darstellung im System Manager erläutert.

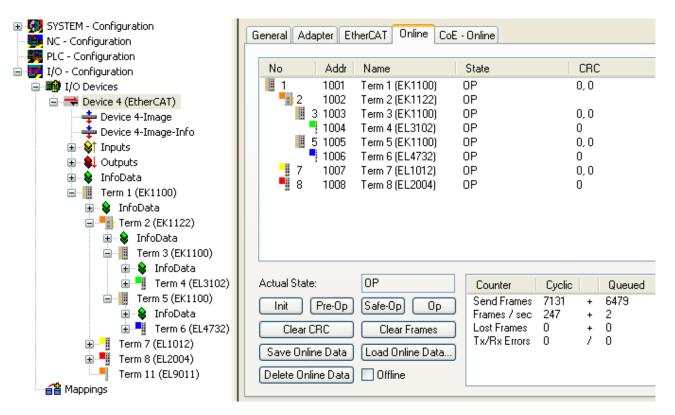


Abb. 65: Beispielkonfiguration

In der TwinCAT Online-Topologie ist der Verdrahtungsplan ersichtlich, s. Abb. *Online Topologie*. Markiert ist darin der EK1122, so dass weitere Informationen dargestellt werden. Die grünen Balken über den Slaves zeigen den ordnungsgemäßen RUN-State in allen Slaves an.

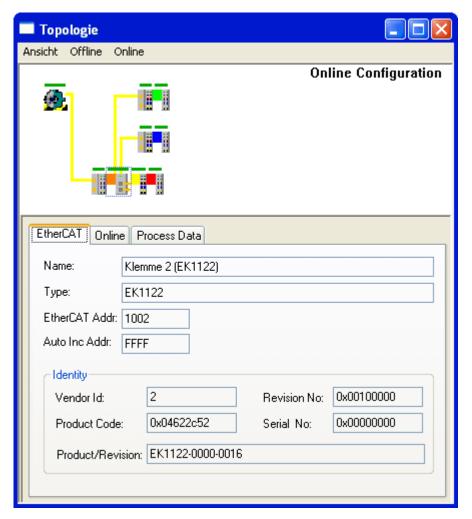


Abb. 66: Online Topologie

Nun soll ein Fehler erzeugt werden: die Verbindung der oberen RJ45-Buchse (X1) zur EL3102 wird getrennt. Innerhalb weniger µs erkennt die ESC in der EK1122 den verlorenen Link und schließt den betroffenen Port selbsttätig. Damit wird das nächste ankommende EtherCAT-Telegramm sofort zum Port D (Port 3) und der EL4732 weitergereicht. Damit fehlt hier der Link und der System Manager kennzeichnet dies in der Online-Anzeige, siehe folgende Abbildung *Beispielkonfiguration mit unterbrochener Leitung*.

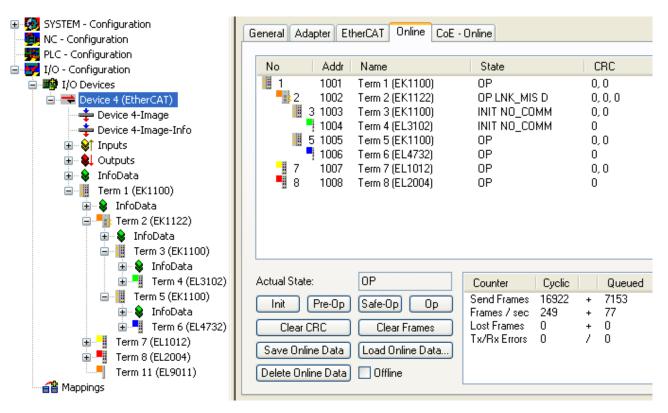


Abb. 67: Beispielkonfiguration mit unterbrochener Leitung

Die Meldungen des System Manager sind wie folgt zu deuten:

- Adresse 1002 EK1122: "OP LNK:MIS D" Slave ist weiterhin im OP-State, vermisst aber einen laut Konfiguration vorhandenen Link an Port D (3)
- Adresse 1003 EK1100: "INIT NO_COMM" da keine Kommunikation mehr zu diesem Slave besteht, wird er als im INIT-State befindlich geführt
- Adresse 1004 EL3104: dto.

Logger-Ausgabe

Im unteren Teil des System Managers kann die Logger-Ausgabe eingeblendet werden (Anzeige → Zeige Logger Ausgabe). Dort werden nicht nur bei Linkunterbrechungen hilfreiche Meldungen zur weiteren Interpretation ausgegeben.

In der Topologie-Ansicht zeigt sich diese Unterbrechung durch eine rote Umrandung der betroffenen Slaves, siehe folgende Abbildung *Topologie Anzeige bei unterbrochener Leitung*.

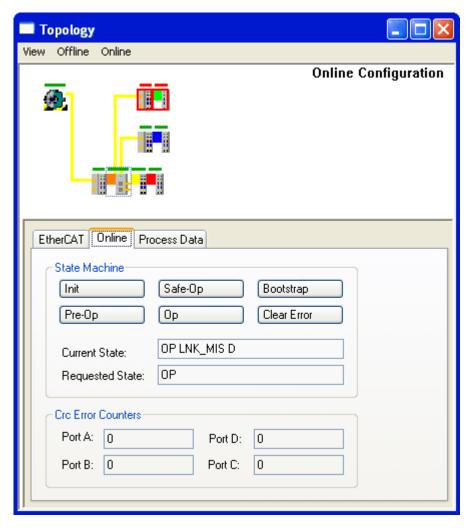


Abb. 68: Topologie Anzeige bei unterbrochener Leitung

Man beachte in <u>Abb. "Beispielkonfiguration [\rightarrow 86]</u>" und <u>Abb. "Beispielkonfiguration mit unterbrochener</u> <u>Leitung" [\rightarrow 88]</u> die Anzeige der azyklischen Frames, siehe folgende Abbildung *Gegenüberstellung der Frame-Anzeigen im System Manager.*

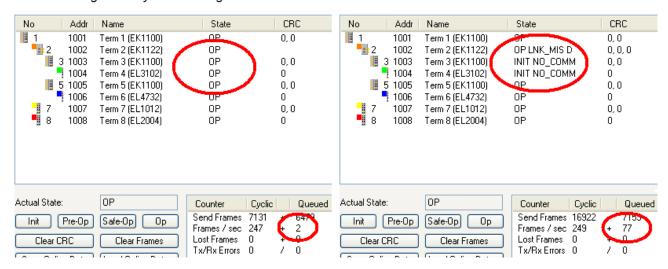


Abb. 69: Gegenüberstellung der Frame-Anzeigen im System Manager

Im linken Bildauszug sind nur sehr wenige (2) azyklische Frames in der betreffenden Sekunde vom Master ausgesendet worden - alle Slaves sind ordnungsgemäß in Betrieb. Im rechten Bildauszug ist dagegen mit aktuell 77 azyklischen Frames/sec ein deutlicher Anstieg zu verzeichnen: der EtherCAT Master hat schnell erkannt, dass nicht alle Slaves störungsfrei am Datenaustausch teilnehmen. Nachdem er die Störung lokalisiert hat, versucht er nun fortlaufend die Verbindung wiederherzustellen.

Verbindungswiederherstellung

Wird nun in diesem Beispiel die Verbindung wiederhergestellt, meldet der EK1122 an den Master, dass am Port D (3) wieder ein Link anliegt. Der EtherCAT Master wird dann seine Prozessdaten für diesen Abschnitt wieder entsprechend bereitstellen. Wenn die Vorbereitungen abgeschlossen sind, wird er den EK1122 anweisen, den Port D (3) für den regulären Datenaustausch wieder zu öffnen. Der zyklische und azyklische Datenverkehr mit den anderen EtherCAT Slaves läuft dabei selbstverständlich weiter.

Externer Zugriff auf die EtherCAT-Diagnose

Es bestehen umfangreiche Möglichkeiten, aus der PLC heraus auf Zustände, Diagnoseinformationen und Funktionen des EtherCAT-Masters zuzugreifen. Auch über ADS sind fast alle Informationen, die der System Manager online darstellt (s. Abbildungen auf dieser Seite) abrufbar. Ebenso können Aktionen des System Managers über PLC oder ADS ausgelöst werden. Beachten Sie dazu entsprechende Informationen im Beckhoff Information System und Erläuterungen zur EtherCAT Diagnose.

6.3 EtherCAT State Machine

Über die EtherCAT State Machine (ESM) wird der Zustand des EtherCAT-Slaves gesteuert. Je nach Zustand sind unterschiedliche Funktionen im EtherCAT-Slave zugänglich bzw. ausführbar. Insbesondere während des Hochlaufs des Slaves müssen in jedem State spezifische Kommandos vom EtherCAT-Master zum Gerät gesendet werden.

Es werden folgende Zustände unterschieden:

- Init
- · Pre-Operational
- · Safe-Operational
- Operational
- Bootstrap

Regulärer Zustand eines jeden EtherCAT-Slaves nach dem Hochlauf ist der Status Operational (OP).

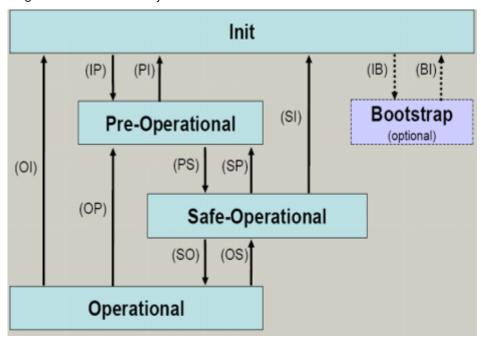


Abb. 70: Zustände der EtherCAT State Machine

Init

Nach dem Einschalten befindet sich der EtherCAT-Slave im Zustand *Init*. Dort ist weder Mailbox- noch Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle 0 und 1 für die Mailbox-Kommunikation.

Pre-Operational (Pre-Op)

Beim Übergang von *Init* nach *Pre-Op* prüft der EtherCAT-Slave, ob die Mailbox korrekt initialisiert wurde.

Im Zustand *Pre-Op* ist Mailbox-Kommunikation aber keine Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die Sync-Manager-Kanäle für Prozessdaten (ab Sync-Manager-Kanal 2), die Kanäle der Fieldbus Memory Management Unit (FMMU) und, falls der Slave ein konfigurierbares Mapping unterstützt, das Mapping der Prozessdatenobjekte (PDOs) oder das Sync-Manager-PDO-Assignement. Weiterhin werden in diesem Zustand die Einstellungen für die Prozessdatenübertragung sowie ggf. noch klemmenspezifische Parameter übertragen, die von den Default-Einstellungen abweichen.

Safe-Operational (Safe-Op)

Beim Übergang von *Pre-Op* nach *Safe-Op* prüft der EtherCAT-Slave, ob die Sync-Manager-Kanäle für die Prozessdatenkommunikation sowie ggf. die Einstellungen für die Distributed Clocks korrekt sind. Bevor er den Zustandswechsel quittiert, kopiert der EtherCAT-Slave aktuelle Inputdaten in die entsprechenden Dual Port (DP)-RAM-Bereiche des ESC.

Im Zustand *Safe-Op* ist Mailbox- und Prozessdatenkommunikation möglich, allerdings hält der Slave seine Ausgänge im sicheren Zustand und gibt sie noch nicht aus. Die Inputdaten werden aber bereits zyklisch aktualisiert.

Ausgänge im SAFEOP

Die standardmäßig aktivierte Überwachung mittels Watchdog bringt die Ausgänge im ESC-Modul in Abhängigkeit von den Einstellungen im SAFEOP und OP in einen sicheren Zustand - je nach Gerät und Einstellung - z. B. auf AUS. Wird dies durch Deaktivieren der Überwachung unterbunden, können auch im Geräte-Zustand SAFEOP Ausgänge geschaltet werden bzw. gesetzt bleiben.

Operational (Op)

Bevor der EtherCAT-Master den EtherCAT-Slave von *Safe-Op* nach *Op* schaltet, muss er bereits gültige Outputdaten übertragen.

Im Zustand *Op* kopiert der Slave die Ausgangsdaten des Masters auf seine Ausgänge. Es ist Prozessdatenund Mailboxkommunikation möglich.

Boot

Im Zustand *Boot* kann ein Update der Slave-Firmware vorgenommen werden. Der Zustand *Boot* ist nur über den Zustand *Init* zu erreichen.

Im Zustand *Boot* ist Mailbox-Kommunikation über das Protokoll File-Access over EtherCAT (FoE) möglich, aber keine andere Mailbox- und Prozessdatenkommunikation.

6.4 CoE-Interface: Hinweis

Dieses Gerät hat kein CoE.

Ausführliche Hinweise zum CoE-Interface finden Sie in der <u>EtherCAT-Systemdokumentation</u> auf der Beckhoff Website.

6.5 EKxxxx - Optionale Distributed Clocks Unterstützung

Grundlagen Distributed Clocks (DC)

Das EtherCAT Distributed-Clocks-System umfasst in den EtherCAT Slaves integrierte lokale Uhren, die über spezielle Datagramme vom EtherCAT Master synchronisiert werden. Nicht alle EtherCAT Slaves unterstützen das Distributed Clocks Verfahren, sondern nur Slaves, deren Funktion dieses erfordert. Im TwinCAT System Manager zeigt ein Slave seine DC-Fähigkeiten, indem er über einen Einstellungsdialog "DC" verfügt.

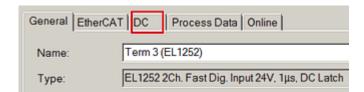


Abb. 71: DC-Reiter zur Anzeige der Distributed Clocks Funktion

Eine dieser lokalen Uhren ist die Referenz-Uhr, nach der alle anderen synchronisiert werden. Siehe dazu entsprechende Erläuterungen in der EtherCAT Grundlagendokumentation. Prinzipbedingt muss das der erste DC-fähige EtherCAT Slave sein. Deshalb wählt TwinCAT standardmäßig den ersten DC-fähigen Teilnehmer als Referenzuhr aus. In den erweiterten Eigenschaften des EtherCAT Masters wird dies dargestellt bzw. kann vom Anwender verändert werden. Die Standard-Einstellung soll nicht verändert werden, außer es wird in entsprechenden Dokumentationen z. B. zur externen Synchronisierung empfohlen.

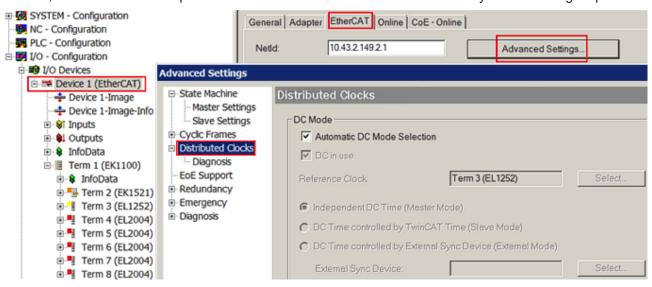


Abb. 72: Erweiterte Einstellung Distributed Clocks im EtherCAT Master

In der Abbildung ist zu erkennen, wie TwinCAT standardmäßig die EL1252 als Referenzuhr auswählt, da die vorhergehenden Komponenten kein DC unterstützen.

Einstellung EtherCAT Device

System- und Infrastrukturteilnehmer wie die Koppler und Abzweige EK1100, EK1122 etc. benötigen zur Funktion keine Distributed Clocks. Dennoch kann es topologisch sinnvoll sein, z. B. den ersten Koppler im EtherCAT System als Referenzuhr festzulegen. Deshalb sind die Infrastrukturkomponenten ab einem bestimmten Bauzustand in der Lage als Referenzuhr zu arbeiten, wenn in der Konfiguration besondere Einstellungen vorgenommen werden.

Die Komponenten unterstützen It. der folg. Tabelle (*DC-Unterstützung ab Rev/FW-Stand*) die Aktivierung der Distributed Clocks:

Gerät	XML-Revision in der Konfiguration	Seriennummer der Komponente
BK1150	ab BK1150-0000-0016	ab Firmware 01: xxxx01yy
CU1128	ab CU1128-0000-0000	ab Firmware 00: xxxx00yy
EK1100	ab EK1100-0000-0017	ab Firmware 06: xxxx06yy
EK1101	ab EK1101-0000-0017	ab Firmware 01: xxxx01yy
EK1501	ab EK1501-0000-0017	ab Firmware 01: xxxx01yy
EK1501-0010	ab EK1501-0010-0017	ab Firmware 02: xxxx02yy
EK1122	ab EK1122-0000-0017	ab Firmware 01: xxxx02yy
EK1521	ab EK1521-0000-0018	ab Firmware 03: xxxx03yy
EK1541	ab EK1541-0000-0016	ab Firmware 01: xxxx01yy
EK1561	ab EK1561-0000-0016	ab Firmware 01: xxxx01yy
EK1521-0010	ab EK1521-0010-0018	ab Firmware 03: xxxx03yy
EK1814	ab EK1814-0000-0016	ab Firmware 00: xxxx00yy

92 Version: 3.9.0 EK112x, EK15xx

Damit TwinCAT eine solche Komponente als DC-Referenzuhr verwendet, ist ein manueller Eingriff bei der Konfigurationserstellung erforderlich, der hier anhand des EK1100 gezeigt wird.

Die Checkboxen "Cyclic Mode Enable" und "Use as potential Reference Clock" müssen gesetzt werden.

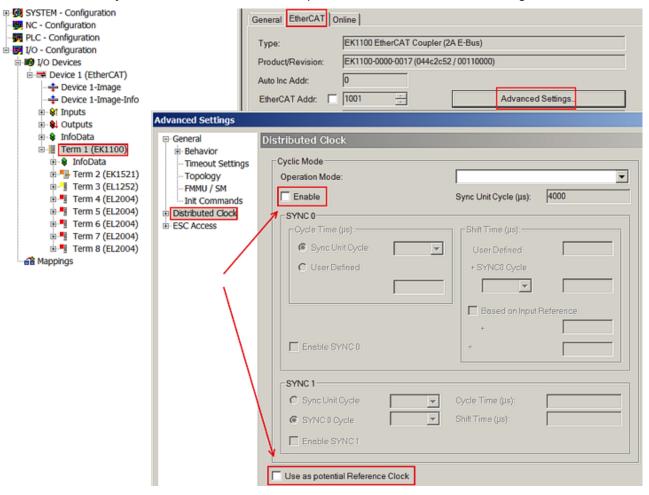


Abb. 73: TwinCAT-Einstellung, um diese Komponente als Referenzuhr zu verwenden

•

Aktivierung Distributed Clocks Unterstützung

Das hier beschriebene Vorgehen führt nur bei den o. a. Komponenten zum (Synchronisierungs-)Erfolg. Auch bei anderen Komponenten können diese Checkboxen gesetzt werden, die Hardware unterstützt diese Funktion jedoch nicht, wenn nicht entsprechend in der jeweiligen Dokumentation angegeben.

Insbesondere darf nach der Inbetriebnahme die Komponente nicht durch eine frühere Version ausgetauscht werden, die den DC-Support nicht leisten kann.

7 Anhang

7.1 Sicherheitshinweis und Verhaltensregeln zur Laser-Klasse 1

⚠ VORSICHT

Produkt der Laser-Klasse 1 nach IEC 60825-1:2014 - Unfallgefahr durch Blendung!

Folgende laserspezifische Verhaltensregeln sind für die in dieser Dokumentation beschriebenen Produkte der Laser-Klasse 1 zu beachten:

- Der Laserstrahl darf nicht auf Personen gerichtet werden, da es durch Blendung zu Unfällen kommen kann.
- · Nicht in den direkten oder reflektierten Strahl blicken.
- Falls Laserstrahlung ins Auge trifft, sind die Augen bewusst zu schließen und der Kopf sofort aus dem Strahl zu bewegen.
- Bei der Verwendung des Lasers dürfen keine optischen Instrumente zur Betrachtung der Strahlungsquelle verwendet werden, da dies zu einer Überschreitung der Expositionsgrenzwerte führen kann.
- Manipulationen (Änderungen) an der Lasereinrichtung sind unzulässig.

7.2 Firmware Kompatibilität

Die Koppler EK1122 und EK15xx verfügen über keine Firmware.

7.3 Firmware Update EL/ES/ELM/EM/EP/EPP/ERPxxxx

Dieses Kapitel beschreibt das Geräte-Update für Beckhoff EtherCAT-Slaves der Serien EL/ES, ELM, EM, EK, EP, EPP und ERP. Ein FW-Update sollte nur nach Rücksprache mit dem Beckhoff Support durchgeführt werden.

HINWEIS

Nur TwinCAT 3 Software verwenden!

Ein Firmware-Update von Beckhoff IO Geräten ist ausschließlich mit einer TwinCAT 3-Installation durchzuführen. Es empfiehlt sich ein möglichst aktuelles Build, kostenlos zum Download verfügbar auf der Beckhoff-Website.

Zum Firmware-Update kann TwinCAT im sog. FreeRun-Modus betrieben werden, eine kostenpflichtige Lizenz ist dazu nicht nötig.

Das für das Update vorgesehene Gerät kann in der Regel am Einbauort verbleiben; TwinCAT ist jedoch im FreeRun zu betreiben. Zudem ist auf eine störungsfreie EtherCAT Kommunikation zu achten (keine "LostFrames" etc.).

Andere EtherCAT-Master-Software wie z. B. der EtherCAT-Konfigurator sind nicht zu verwenden, da sie unter Umständen nicht die komplexen Zusammenhänge beim Update von Firmware, EEPROM und ggf. weiteren Gerätebestandteilen unterstützen.

Speicherorte

In einem EtherCAT-Slave werden an bis zu drei Orten Daten für den Betrieb vorgehalten:

Jeder EtherCAT-Slave hat eine Gerätebeschreibung, bestehend aus Identität (Name, Productcode), Timing-Vorgaben, Kommunikationseinstellungen u. a.
Diese Gerätebeschreibung (ESI; EtherCAT-Slave Information) kann von der Beckhoff Website im Downloadbereich als Zip-Datei heruntergeladen werden und in EtherCAT-Mastern zur Offline-Konfiguration verwendet werden, z. B. in TwinCAT.
 Vor allem aber trägt jeder EtherCAT-Slave seine Gerätebeschreibung (ESI) elektronisch auslesbar in einem lokalen Speicherchip, dem einem sog. ESI-EEPROM. Beim Einschalten wird diese Beschreibung einerseits im Slave lokal geladen und teilt ihm seine Kommunikationskonfiguration mit, andererseits kann der EtherCAT-Master den Slave so identifizieren und u. a. die EtherCAT Kommunikation entsprechend einrichten.

HINWEIS

Applikationsspezifisches Beschreiben des ESI-EEPROM

Die ESI wird vom Gerätehersteller nach ETG-Standard entwickelt und für das entsprechende Produkt freigegeben.

- Bedeutung für die ESI-Datei: Eine applikationsseitige Veränderung (also durch den Anwender) ist nicht zulässig.
- Bedeutung für das ESI-EEPROM: Auch wenn technisch eine Beschreibbarkeit gegeben ist, dürfen die ESI-Teile im EEPROM und ggf. noch vorhandene freie Speicherbereiche über den normalen Update-Vorgang hinaus nicht verändert werden. Insbesondere für zyklische Speichervorgänge (Betriebsstundenzähler u. ä.) sind dezidierte Speicherprodukte wie EL6080 oder IPC-eigener NOVRAM zu verwenden.
 - Je nach Funktionsumfang und Performance besitzen EtherCAT-Slaves einen oder mehrere lokale Controller zur Verarbeitung von IO-Daten. Das darauf laufende Programm ist die so genannte Firmware im Format *.efw.
 - In bestimmten EtherCAT-Slaves kann auch die EtherCAT Kommunikation in diesen Controller integriert sein. Dann ist der Controller meist ein so genannter **FPGA**-Chip mit der *.rbf-Firmware.

Kundenseitig zugänglich sind diese Daten nur über den Feldbus EtherCAT und seine Kommunikationsmechanismen. Beim Update oder Auslesen dieser Daten ist insbesondere die azyklische Mailbox-Kommunikation oder der Registerzugriff auf den ESC in Benutzung.

Der TwinCAT System Manager bietet Mechanismen, um alle drei Teile mit neuen Daten programmieren zu können, wenn der Slave dafür vorgesehen ist. Es findet üblicherweise keine Kontrolle durch den Slave statt, ob die neuen Daten für ihn geeignet sind, ggf. ist ein Weiterbetrieb nicht mehr möglich.

Vereinfachtes Update per Bundle-Firmware

Bequemer ist der Update per sog. **Bundle-Firmware**: hier sind die Controller-Firmware und die ESI-Beschreibung in einer *.efw-Datei zusammengefasst, beim Update wird in der Klemme sowohl die Firmware, als auch die ESI verändert. Dazu ist erforderlich

- dass die Firmware in dem gepackten Format vorliegt: erkenntlich an dem Dateinamen der auch die Revisionsnummer enthält, z. B. ELxxxx-xxxx_REV0016_SW01.efw
- dass im Download-Dialog das Passwort=1 angegeben wird. Bei Passwort=0 (default Einstellung) wird nur das Firmware-Update durchgeführt, ohne ESI-Update.
- dass das Gerät diese Funktion unterstützt. Die Funktion kann in der Regel nicht nachgerüstet werden, sie wird Bestandteil vieler Neuentwicklungen ab Baujahr 2016.

Nach dem Update sollte eine Erfolgskontrolle durchgeführt werden

- ESI/Revision: z. B. durch einen Online-Scan im TwinCAT ConfigMode/FreeRun dadurch wird die Revision beguem ermittelt
- Firmware: z. B. durch einen Blick ins Online-CoE des Gerätes

HINWEIS

Beschädigung des Gerätes möglich!

- ✓ Beim Herunterladen von neuen Gerätedateien ist zu beachten
- a) Das Herunterladen der Firmware auf ein EtherCAT-Gerät darf nicht unterbrochen werden.
- b) Eine einwandfreie EtherCAT-Kommunikation muss sichergestellt sein, CRC-Fehler oder LostFrames dürfen nicht auftreten.
- c) Die Spannungsversorgung muss ausreichend dimensioniert, die Pegel entsprechend der Vorgabe sein.
- ⇒ Bei Störungen während des Updatevorgangs kann das EtherCAT-Gerät ggf. nur vom Hersteller wieder in Betrieb genommen werden!

7.3.1 Gerätebeschreibung ESI-File/XML

HINWEIS

ACHTUNG bei Update der ESI-Beschreibung/EEPROM

Manche Slaves haben Abgleich- und Konfigurationsdaten aus der Produktion im EEPROM abgelegt. Diese werden bei einem Update unwiederbringlich überschrieben.

Die Gerätebeschreibung ESI wird auf dem Slave lokal gespeichert und beim Start geladen. Jede Gerätebeschreibung hat eine eindeutige Kennung aus Slave-Name (9-stellig) und Revision-Nummer (4-stellig). Jeder im System Manager konfigurierte Slave zeigt seine Kennung im EtherCAT-Reiter:

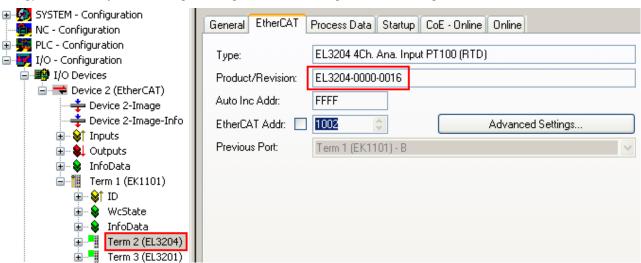


Abb. 74: Gerätekennung aus Name EL3204-0000 und Revision -0016

Die konfigurierte Kennung muss kompatibel sein mit der tatsächlich als Hardware eingesetzten Gerätebeschreibung, d. h. der Beschreibung die der Slave (hier: EL3204) beim Start geladen hat. Üblicherweise muss dazu die konfigurierte Revision gleich oder niedriger der tatsächlich im Klemmenverbund befindlichen sein.

Weitere Hinweise hierzu entnehmen Sie bitte der EtherCAT System-Dokumentation.

Update von XML/ESI-Beschreibung

Die Geräterevision steht in engem Zusammenhang mit der verwendeten Firmware bzw. Hardware. Nicht kompatible Kombinationen führen mindestens zu Fehlfunktionen oder sogar zur endgültigen Außerbetriebsetzung des Gerätes. Ein entsprechendes Update sollte nur in Rücksprache mit dem Beckhoff Support ausgeführt werden.

Anzeige der Slave-Kennung ESI

Der einfachste Weg die Übereinstimmung von konfigurierter und tatsächlicher Gerätebeschreibung festzustellen, ist im TwinCAT-Modus Config/FreeRun das Scannen der EtherCAT-Boxen auszuführen:

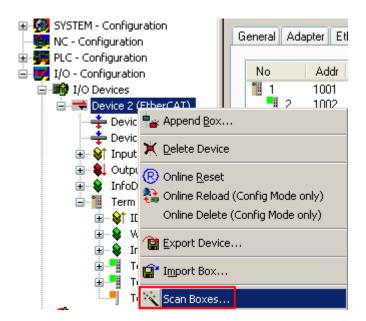


Abb. 75: Rechtsklick auf das EtherCAT-Gerät bewirkt das Scannen des unterlagerten Feldes

Wenn das gefundene Feld mit dem konfigurierten übereinstimmt, erscheint

Abb. 76: Konfiguration identisch

ansonsten erscheint ein Änderungsdialog, um die realen Angaben in die Konfiguration zu übernehmen.

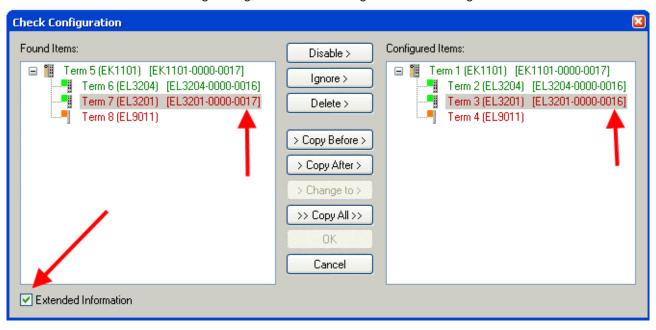


Abb. 77: Änderungsdialog

In diesem Beispiel in Abb. Änderungsdialog. wurde eine EL3201-0000-**0017** vorgefunden, während eine EL3201-0000-**0016** konfiguriert wurde. In diesem Fall bietet es sich an, mit dem *Copy Before*-Button die Konfiguration anzupassen. Die Checkbox *Extended Information* muss gesetzt werden, um die Revision angezeigt zu bekommen.

Änderung der Slave-Kennung ESI

Die ESI/EEPROM-Kennung kann unter TwinCAT wie folgt aktualisiert werden:

- Es muss eine einwandfreie EtherCAT-Kommunikation zum Slave hergestellt werden
- · Der State des Slave ist unerheblich
- Rechtsklick auf den Slave in der Online-Anzeige führt zum Dialog EEPROM Update, Abb. EEPROM Update

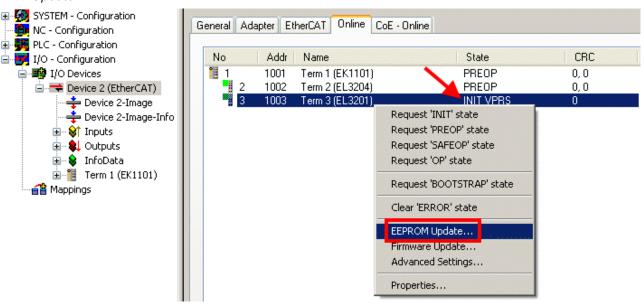


Abb. 78: EEPROM Update

Im folgenden Dialog wird die neue ESI-Beschreibung ausgewählt, s. Abb. *Auswahl des neuen ESI*. Die CheckBox *Show Hidden Devices* zeigt auch ältere, normalerweise ausgeblendete Ausgaben eines Slave.

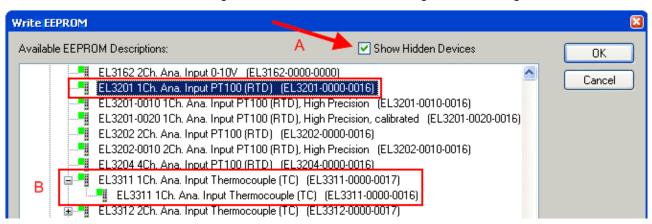


Abb. 79: Auswahl des neuen ESI

Ein Laufbalken im System Manager zeigt den Fortschritt - erst erfolgt das Schreiben, dann das Veryfiing.

Anderung erst nach Neustart wirksam

Die meisten EtherCAT-Geräte lesen eine geänderte ESI-Beschreibung umgehend bzw. nach dem Aufstarten aus dem INIT ein. Einige Kommunikationseinstellungen wie z. B. Distributed Clocks werden jedoch erst bei PowerOn gelesen. Deshalb ist ein kurzes Abschalten des EtherCAT-Slave nötig, damit die Änderung wirksam wird.

7.3.2 Erläuterungen zur Firmware

Versionsbestimmung der Firmware

Versionsbestimmung mit dem TwinCAT System Manager

Der TwinCAT System Manager zeigt die Version der Controller-Firmware an, wenn der Slave online für den Master zugänglich ist. Klicken Sie hierzu auf die E-Bus-Klemme deren Controller-Firmware Sie überprüfen möchten (im Beispiel Klemme 2 (EL3204) und wählen Sie den Karteireiter *CoE-Online* (CAN over EtherCAT).

CoE-Online und Offline-CoE

Es existieren zwei CoE-Verzeichnisse:

- **online:** es wird im EtherCAT-Slave vom Controller angeboten, wenn der EtherCAT-Slave dies unterstützt. Dieses CoE-Verzeichnis kann nur bei angeschlossenem und betriebsbereitem Slave angezeigt werden.
- offline: in der EtherCAT Slave Information ESI/XML kann der Default-Inhalt des CoE enthalten sein. Dieses CoE-Verzeichnis kann nur angezeigt werden, wenn es in der ESI (z. B. "Beckhoff EL5xxx.xml") enthalten ist.

Die Umschaltung zwischen beiden Ansichten kann über den Button Advanced vorgenommen werden.

In Abb. *Anzeige FW-Stand EL3204* wird der FW-Stand der markierten EL3204 in CoE-Eintrag 0x100A mit 03 angezeigt.

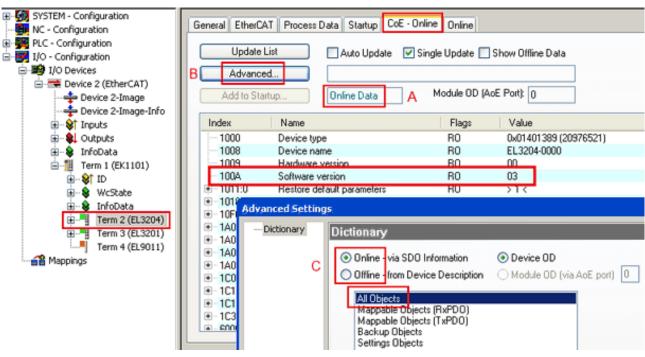


Abb. 80: Anzeige FW-Stand EL3204

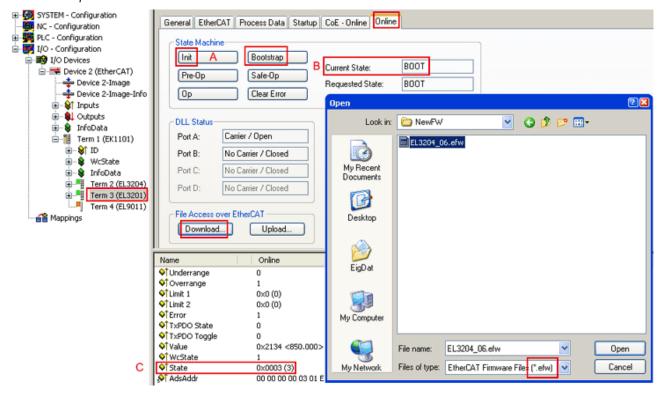
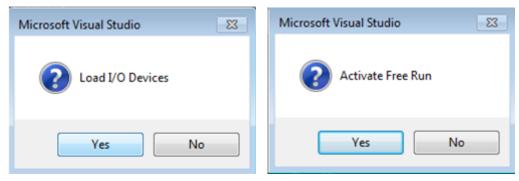
TwinCAT 2.11 zeigt in (A) an, dass aktuell das Online-CoE-Verzeichnis angezeigt wird. Ist dies nicht der Fall, kann durch die erweiterten Einstellungen (B) durch *Online* und Doppelklick auf *All Objects* das Online-Verzeichnis geladen werden.

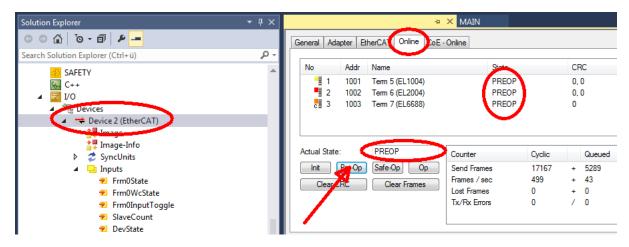
7.3.3 Update Controller-Firmware *.efw

CoE-Verzeichnis

Das Online-CoE-Verzeichnis wird vom Controller verwaltet und in einem eigenen EEPROM gespeichert. Es wird durch ein FW-Update im Allgemeinen nicht verändert.

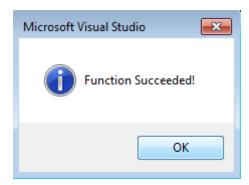
Um die Controller-Firmware eines Slave zu aktualisieren, wechseln Sie zum Karteireiter *Online*, s. Abb. *Firmware Update*.


Abb. 81: Firmware Update

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen. Gültig für TwinCAT 2 und 3 als EtherCAT-Master.

 TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.



• EtherCAT-Master in PreOP schalten

- · Slave in INIT schalten (A)
- · Slave in BOOTSTRAP schalten
- · Kontrolle des aktuellen Status (B, C)
- Download der neuen *efw-Datei, abwarten bis beendet. Ein Passwort wird in der Regel nicht benötigt.

- · Nach Beendigung des Download in INIT schalten, dann in PreOP
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!)
- Im CoE 0x100A kontrollieren ob der FW-Stand korrekt übernommen wurde.

7.3.4 FPGA-Firmware *.rbf

Falls ein FPGA-Chip die EtherCAT-Kommunikation übernimmt, kann ggf. mit einer *.rbf-Datei ein Update durchgeführt werden.

- Controller-Firmware f
 ür die Aufbereitung der E/A-Signale
- FPGA-Firmware für die EtherCAT-Kommunikation (nur für Klemmen mit FPGA)

Die in der Seriennummer der Klemme enthaltene Firmware-Versionsnummer beinhaltet beide Firmware-Teile. Wenn auch nur eine dieser Firmware-Komponenten verändert wird, dann wird diese Versionsnummer fortgeschrieben.

Versionsbestimmung mit dem TwinCAT System-Manager

Der TwinCAT System Manager zeigt die Version der FPGA-Firmware an. Klicken Sie hierzu auf die Ethernet-Karte Ihres EtherCAT-Stranges (im Beispiel Gerät 2) und wählen Sie den Karteireiter *Online*.

Die Spalte Reg:0002 zeigt die Firmware-Version der einzelnen EtherCAT-Geräte in hexadezimaler und dezimaler Darstellung an.

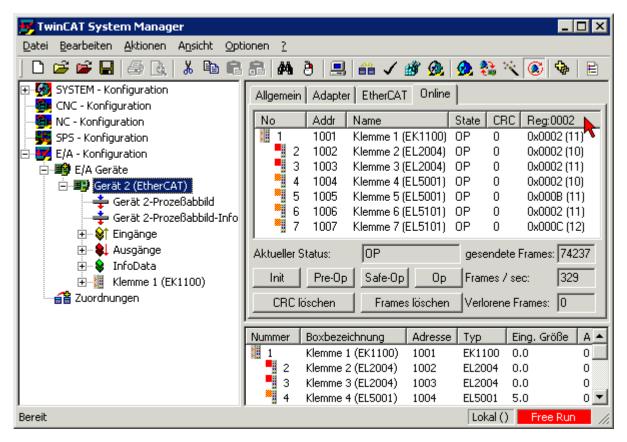


Abb. 82: Versionsbestimmung FPGA-Firmware

Falls die Spalte *Reg:0002* nicht angezeigt wird, klicken sie mit der rechten Maustaste auf den Tabellenkopf und wählen im erscheinenden Kontextmenü, den Menüpunkt *Properties*.

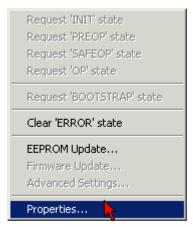


Abb. 83: Kontextmenu Eigenschaften (Properties)

In dem folgenden Dialog *Advanced Settings* können Sie festlegen, welche Spalten angezeigt werden sollen. Markieren Sie dort unter *Diagnose/***Online Anzeige** das Kontrollkästchen vor *'0002 ETxxxx Build'* um die Anzeige der FPGA-Firmware-Version zu aktivieren.

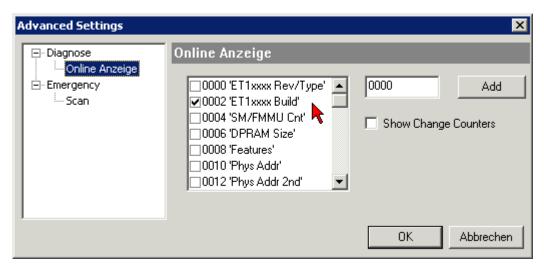


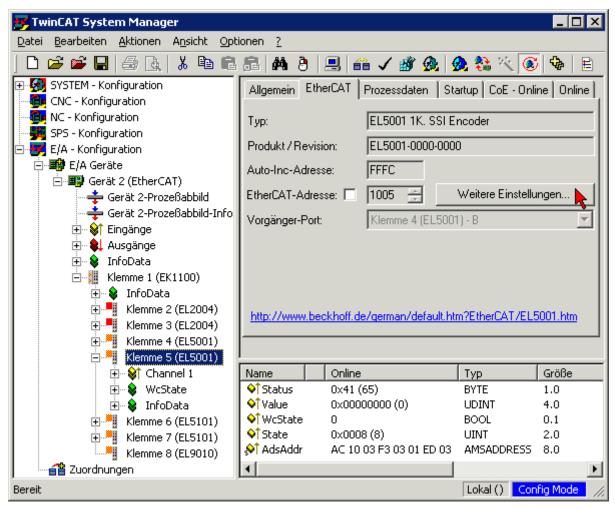
Abb. 84: Dialog Advanced settings

Update

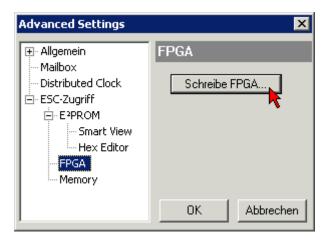
Für das Update der FPGA-Firmware

- eines EtherCAT-Kopplers, muss auf diesem Koppler mindestens die FPGA-Firmware-Version 11 vorhanden sein.
- einer E-Bus-Klemme, muss auf dieser Klemme mindestens die FPGA-Firmware-Version 10 vorhanden sein.

Ältere Firmware-Stände können nur vom Hersteller aktualisiert werden!


Update eines EtherCAT-Geräts

Es ist folgender Ablauf einzuhalten, wenn keine anderen Angaben z. B. durch den Beckhoff Support vorliegen:


• TwinCAT System in ConfigMode/FreeRun mit Zykluszeit >= 1 ms schalten (default sind im ConfigMode 4 ms). Ein FW-Update während Echtzeitbetrieb ist nicht zu empfehlen.

 Wählen Sie im TwinCAT System Manager die Klemme an, deren FPGA-Firmware Sie aktualisieren möchten (im Beispiel: Klemme 5: EL5001) und klicken Sie auf dem Karteireiter EtherCAT auf die Schaltfläche Weitere Einstellungen:



 Im folgenden Dialog Advanced Settings klicken Sie im Menüpunkt ESC-Zugriff/E²PROM/FPGA auf die Schaltfläche Schreibe FPGA:

• Wählen Sie die Datei (*.rbf) mit der neuen FPGA-Firmware aus und übertragen Sie diese zum EtherCAT-Gerät:

- Abwarten bis zum Ende des Downloads
- Slave kurz stromlos schalten (nicht unter Spannung ziehen!). Um die neue FPGA-Firmware zu aktivieren ist ein Neustart (Aus- und Wiedereinschalten der Spannungsversorgung) des EtherCAT-Geräts erforderlich
- · Kontrolle des neuen FPGA-Standes

HINWEIS

Beschädigung des Gerätes möglich!

Das Herunterladen der Firmware auf ein EtherCAT-Gerät dürfen Sie auf keinen Fall unterbrechen! Wenn Sie diesen Vorgang abbrechen, dabei die Versorgungsspannung ausschalten oder die Ethernet-Verbindung unterbrechen, kann das EtherCAT-Gerät nur vom Hersteller wieder in Betrieb genommen werden!

7.3.5 Gleichzeitiges Update mehrerer EtherCAT-Geräte

Die Firmware von mehreren Geräten kann gleichzeitig aktualisiert werden, ebenso wie die ESI-Beschreibung. Voraussetzung hierfür ist, dass für diese Geräte die gleiche Firmware-Datei/ESI gilt.

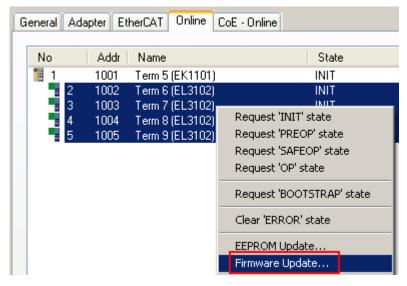


Abb. 85: Mehrfache Selektion und FW-Update

Wählen Sie dazu die betreffenden Slaves aus und führen Sie das Firmware-Update im BOOTSTRAP Modus wie o. a. aus.

7.4 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- Ersatzteilservice
- · Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com
Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland


Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com

Internet: www.beckhoff.com

Mehr Informationen: www.beckhoff.com/ek1xxx

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com

