/O Push Security

The evolution of
phishing attacks

How modern phishing tools and techniques have
changed the game — and what security teams can

do to level the playing field.

))

.

N/ /)

/
\

/

/

TN
DN

/
/ 0\

N

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

0
N
\

JANRVAVAN

o

\

/O Push Security
About the author

Jacques Louw is Co-founder and CPO at Push Security.
Previously Technical Director at MWR InfoSecurity, a research-
led security consultancy, he started as a red-teamer before
switching sides to detection and response. Now, he builds
browser security tools for blue teams at Push.

\

/

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security

Contents

Introduction 1
Gen 1: Classic phishing (in an endpoint-centric world) K}
Setting the scene: A short history of phishing security 4
Email security: Blocklists, URL rewriting and “web sandboxes” 5
Network security: Web proxies and proactive scanning 7
What changed? 8
Gen 2: Phishing pages evolve to defeat detections and bypass MFA 9
Bypassing MFA with Attacker-in-the-Middle kits 9
Bypassing passkeys with downgrade attacks 10
Sandbox evasion techniques — turning legit bot protection against the internet n
Attacker-in-the-Middle is table stakes 12
Detection and response hasn’t kept up 12
Gen 3: Modern phishing using professionalized Attacker-in-the-Middle platforms 13
Phishing delivery techniques are evolving 14
Using trusted websites to host phishing links and deliver phishing messages 15
Delivering links via non-email channels 16
Further evading URL-based detections 17
Anti-analysis and obfuscation techniques 18
Conditional loading and anti-sandbox countermeasures 19
DOM, page, and code obfuscation 20
Visual detection evasion 21
New observations and future trends 22
Using cross-domain iframes to block injected detections 22
Widening the net: Expanded app targeting 22
Consent phishing and other ways around “phishing-resistant” authentication 23

Push is like EDR, but for your browser 24

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security

Introduction

It's easy to write off phishing as unsophisticated and simplistic, particularly when we think
back to the first generation of phishing attacks — static HTML pages purely designed to steal

your username and password, linked directly from an email.

But modern phishing has changed a lot in the past decade or so. MFA-bypassing Attacker-in-the-
Middle (AitM) kits are table stakes — anyone can pick up a copy of Evilginx and immediately blow
past most email and network security solutions on the market.

But the most sophisticated attacks — the ones that usually hit the headlines in the form of major
breaches — are doing much more than this. The latest generation of fully customized AitM
phishing kits are dynamically obfuscating the code that loads the web page, implementing bot
protection through custom CAPTCHA, and using runtime anti-analysis features, making them
increasingly difficult to detect by the tools most enterprises are using to combat the problem.

The techniques used by attackers to deliver phishing lures are also more sophisticated. Groups like
Scattered Spider have been seen using malvertising techniques, delivering phishing links via paid
Google ads, while phishing campaigns are frequently encountered in IM apps (such as Slack and
Teams), as well as public messaging services like LinkedIn and Reddit — bypassing email altogether.

The latest trends indicate that attackers are responding to increasingly hardened IdP/SSO
configuration by circumventing MFA and passkeys, either by downgrading to a backup (less
secure) authentication method, or sidestepping the legitimate auth process entirely through
methods like consent phishing.

Attackers have also realized how much valuable data exists in Shadow Saa$, highlighted by major
Saa$S breaches impacting apps like Snowflake. This is driving broader targeting of apps like Slack,
Mailchimp, Postman, GitHub, and other commonly-used business apps directly — bypassing
Identity Provider (IdP) accounts like Microsoft, Google, and Okta that typically have more robust
authentication controls and secure configuration options.

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

You can also check out our latest resource, the phishing detection evasion techniques matrix,

where we've broken down the methods that modern phishing attacks are using, to help
security teams to evaluate their security tools and capabilities and identify gaps. Like our SaaS
attacks matrix, this will grow over time as new techniques are identified.

We'll signpost many of the phishing detection evasion techniques throughout this whitepaper.

{E} Phase 1: Targeting @ Phase 5: Anti-analysis
Identifying apps and users to Techniques to defeat automated
evade security controls and “sandbox” analysis tools by
achieve the shortest time-to- preventing security teams and
impact of a phishing attack. bots from accessing the page.

900 Phase 2: Link delivery > @ Phase 6: Page obfuscation
Deliver links using phishing Obfuscating page elements to
vectors that evade break detection signatures
traditional security analysing page content and
controls. code.

(&)

9\@ Phase 3: Link camouflage L [$#] Phase 7: Defeat MFA & CA
Masking malicious links to Defeat authentication and
prevent detection at the email, access controls in order to
network proxy, or safe successfully execute the
browsing layer. phishing attack.

-> & Phase 4: Tl evasion - ﬁ Phase 8: Account takeover

Preventing Tl feeds from flagging Achieve a form of account

and blocking known-bad domains takeover and conclude the

by masking or changing elements identity attack, enabling further
likely to be flagged. exploitation to take place.

Check out our phishing detection evasion technigues matrix on GitHub.

https://phishing-techniques.pushsecurity.com/
https://github.com/pushsecurity/saas-attacks
https://github.com/pushsecurity/saas-attacks
https://phishing-techniques.pushsecurity.com/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper
https://pushsecurity.com/demo/?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security
Gen 1: Classic phishing

(in an endpoint-centric world)

A decade or so ago, phishing attacks took one of two forms:

* Tricking a victim into installing malware on their machine directly.
 Tricking a victim into entering their credentials (simply, a username and password, no MFA)
into your static HTML webpage, which you could leverage to get to the point of installing malware.

Both were a valid and reliable way to get access to an internal network (in other words, breaching the
network perimeter via an endpoint). You sent a user an email with a link to a static HTML webpage
(most commonly a generic Exchange Web Access clone) that tricked them into giving you Active
Directory credentials, which were used to login to an exposed remote desktop service or the victim’s
mailbox, which you could use as a foothold to install malware. In the early 2010s, this was a staple of
“red teaming 101" for pentesters and hands-on-keyboard threat-actors alike.

A lot has changed since then. We're no longer running our businesses from the same kind of network.
Modern business IT is much less on-premises castle-and-moat, and is instead a decentralized
sprawl of SaaS and cloud services that users simply log into over the internet. And with the EDR
revolution making malware-driven phishing attacks significantly harder than they used to be, identity
is a much more viable option for attackers — which is reflected in the biggest breaches of the last

few years (looking at you, Snowflake!).

Legacy on-prem Modern cloud-native
H I = = == = = = = = » ¢ . . .

! DMZ
ey -1
4 I b

X0
00

1/
mEEEEEEES 1
W A

gl Oxteiehelely W ocnm

BB &

Attackers are now targeting business applications directly over the internet via identities —
without even touching the endpoint.

https://pushsecurity.com/resources/2024-identity-attacks
https://pushsecurity.com/resources/2024-identity-attacks
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

As identity became increasingly important, anti-phishing controls started to mature, and MFA in its
more modern authenticator-based form became widespread (not just the SMS codes for your
banking app that led early Scattered Spider to SIM swapping).

But before we dive into what phishing looks like today, let’s recap its origins and how the email and
network anti-phishing controls as we know them came to be.

Setting the scene: A short history of phishing security

Phishing detection was (and still is) primarily email based. In the early 2010s, this was limited to
inspecting attachments with embedded malware, and for about a decade adding macros to Word
and Excel documents was the technique you were most worried about.

The original way that the industry (unsuccessfully) tackled malware phishing was through sandbox
analysis. The TL;DR is that if you suspect an executable file to be malicious, you open it in a virtual
machine and observe what it does using tracing tooling.

This quickly went out of fashion as sandbox evasion techniques (like setting a delay before the
execution of malicious code) became standard practice in endpoint malware — it was clear that
observing the live behavior in-situ using an agent was the only viable path forward. This is the insight
that gave us CrowdStrike and the modern EDR industry.

When the EDR revolution hit, malware detection moved away from sandboxes to real-time
detection on the device, leaving email-based controls to deal with credential attacks.

4 N [N\
Malware phishing Credential phishing

d d
1 | A
Uy

Endpoint security (EDR) Email security (SEG)
\ y

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Email security: Blocklists, URL rewriting and “web sandboxes”

Early detection of credential phishing focused on employee training and adding “report
phishing” buttons to Outlook. When a domain was flagged as malicious by a user, it was added a to

a list of blocked domains to prevent other users from accessing the same known-bad page.

o
L r
Link flagged as Filtered through Known-bad blocked by
malicious to blocklists email scanners & SWGs

This was somewhat effective as at the time because there was no AWS, Route53, or Cloudflare, Let's
Encrypt was the big new thing. Simple things like changing your phishing website’'s domain name and
getting new SSL certificates required manual human input, and so genuinely slowed attackers down
(in a way that these things don’t do today).

Fast forward a few years, a new breed of phishing security solution is born analysing signatures for
the content of phishing pages, not just looking for known-bad domains.

The caveat here is that you cannot simply load a link in an email to fetch the phishing page —
because loading that link can cause unpredictable actions. Imagine for example your email security
solution opened every link in all your emails — it would constantly be “unsubscribing”, “confirming”,
and “opting-into” a whole load of things.

To get around this inability to open links until the user decides to click them, email security vendors
landed on the technique of URL rewriting, which replaces the URL of a link in an email with a link they
can monitor and which, when clicked, will forward you to the original link. Think of this almost like a
link shortening service: When the user clicks a link, the vendor clicks the same link and analyses
the content in their sandbox.

A - -y - =

Email enters user Email solution User clicks Page analysed in web
mailbox replaces link the link sandbox

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Since modern web pages are dynamic and require JavaScript to fully render the page, email solutions
opted to open them in a headless browser (essentially a “web sandbox”) and analyze the resulting
DOM (basically the fully loaded web page). This way, you can take screenshots of the rendered page

to do visual similarity checks, look for known bad scripts, or any other signature in the page source.

Once a site was identified as malicious, it could be blocklisted, preventing any users from accessing
it. Security service providers were able to aggregate this threat intelligence, providing Tl feeds or

managed services to block pages as they were discovered.

This sounds useful, but the crippling shortcoming of this approach is that none of this can be done
ahead of time. At best it can be done simultaneously, but mostly it happens after the fact. Users
won't accept being asked to wait every time they click a link so the web page can be analysed in the
sandbox before they are let through.

L)

User logs in Password stolen

User clicks link

| |

Page analyzed Alarm raised (too late)

Email tools were always one step behind due to the lack of true real-time analysis.

Consequently, the first user that clicks a phishing link seen for the first time will be let through
and hit the phishing site — and potentially fall victim.

The saving grace here is that if the sandbox analysis succeeds in detecting the link as phishing, the
email solution can find other emails with the same or similar links and quarantine them, to prevent
more users accessing the same link. And in the old days, resetting a phished AD account credential
was pretty straightforward (though much less so in today’s world of cloud IdPs and Saa$S sprawl).

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Network security: Web proxies and proactive scanning

Alongside email security controls, network security controls were introduced to inspect the page as

it was loaded, as well as the network traffic resulting from the user’s interactions with the page.

4 \

® > 2 —— ke

Email-only checks Known-bad Web page
(e.g. domain rep) URL check analysis
\- y

B N

Known-bad Web page Web traffic
URL check analysis analysis
\ J

Network

Network controls overlap with email solutions but with additional visibility of web traffic.

Network-based controls came in two main forms: proactive scanning of pages before they were
sent to victims, and using web proxies to intercept and analyze traffic resulting from users
interacting with a phishing page (aka. “break and inspect”).

Proactive scanning of web pages

To bolster point-in-time scanning of pages as they are sent to would-be victims, security vendors
started to monitor public data feeds to discover new websites going live on the internet.

The main data being consumed here are certificate transparency logs — each time a new TLS
certificate is issued for a public domain, the CA issues an event on public transparency logs. If you're
Google or Cloudflare and you're indexing the web and/or running a major DNS resolution service,
you've got other great sources of information.

However you find out about a new website going live, you can then fetch that website, or load it in a
web sandbox (i.e. headless browser) and analyse the site DOM. You can then do the same kinds of
detections as the proxy or email solutions use, but with one massive advantage — you can detect
phishing campaigns before links are even mailed to targets (meaning no sacrificial first victim). This
can be very effective and today these feeds are built into mainstream browsers — most notably
Google Chrome's integrated safe browsing service.

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security
Traffic analysis via web proxy

If you're able to force all your workforce's web traffic through a proxy solution, it's possible for those
solutions to inspect the content of web requests, and reconstruct the web page from this traffic.
Since Gen 1 phishing attacks were simple static HTML pages, building detections for them was largely
effective if you could afford the cost of the compute-time to “break and inspect” the traffic to drive
detections. Modern solutions can do this relatively well, even without terrible latency implications.

That said, modern solutions also need to deal with distributed workforces, and typically that means a
cloud-hosted, distributed proxy solution. A nasty side effect of this is that the proxy solution must
do complete TLS-decryption of all web traffic to do useful detections. The result is that the more
complex the page and the resulting traffic (which is exactly what is about to happen in our
timeline of phishing evolution), the less likely that you'll be able to analyze everything in real-time.

This means most of this data is only really analyzed in post-hoc investigation scenarios.

o1 o1
@ 108 @ —7 108

User loads and Encrypted Traffic intercepted Traffic re-
interacts with network traffic and analyzed encrypted and sent
phishing page is generated by proxy to destination

The increasing complexity of web pages makes “break and inspect” less viable as a real-
time source of phishing detections.

What changed?

Although there are some clear limitations and challenges, for the most part “classic” phishing
scenarios were less of a problem for security teams than managing vulnerabilities and the cat-and-
mouse game of EDR evasion and threat hunting. But then networks fundamentally changed with
cloud transformation and SaaS adoption, increasing the size of the prize when it came to identity
attacks and account takeover.

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Gen 2: Phishing evolves to defeat
detections and bypass MFA

Attackers looking to take advantage of the new world of cloud identity providers (IdPs) and
SaaS$ services had to contend with two main challenges:

» The broad adoption of MFA (in particular the use of authenticator apps) especially on the most
commonly targeted IdP platforms like Microsoft, Google and Okta.

* The old “static website on a new domain” trick just wasn’t working anymore with automated
and proactive website analysis.

Bypassing MFA with Attacker-in-the-Middle phishing

Because MFA is typically time-bound, attackers generally can’t clone or copy the second factor
(outside unscalable targeted attacks like SIM swapping). But, if you can get the victim to authenticate
and create a real-session on your behalf, you don’t need to intercept the MFA factor — just the

resulting session token.

That's why MFA-bypassing Attacker-in-the-Middle phishing kits are the standard choice for

attackers today. These work by intercepting the authenticated session created when a victim
enters their password and completes an MFA check. To do this, the phishing website simply passes
messages between the user and the real website — hence “Attacker-in-the-Middle”".

In this scenario, the user is actually interacting with the real Microsoft website via the phishing
“website”. Part of the genius is that, in a way, this is actually less effort to do than creating a real
phishing website — you can skip that and just pass messages. Once the user logs in, the attacker can
take the session cookies and use that to access the victim’s account.

— — @
dah <

Victim authenticates Attacker accesses app
to malicious page, using captured session
completing MFA checks tokens

Malicious page proxies information
to real site, logging in successfully

https://phishing-techniques.pushsecurity.com/techniques/aitm-phishing/
https://phishing-techniques.pushsecurity.com/techniques/session-theft/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Bypassing passkeys with downgrade attacks

Lately though, awareness is starting to grow around some MFA methods being “phishable” (i.e. not
phishing resistant). The improvement is often called a “passkey” and is typically a hardware security
device that is built-into your laptop (e.g. a fingerprint sensor on a laptop) or something you plug into
your device (e.g. a Yubikey). Because passkey-based logins are domain-bound, trying to use a
passkey for microsoft.com on phishing.com simply won't generate the correct value to pass the

authentication check, even when proxied using an AitM kit.

However, attackers have realized that even as these new phishing-resistant methods are
starting to become used, most users still have alternative MFA methods active. The attacker
can then do what's called a downgrade attack.

When conducting an Attacker-in-the-Middle phishing attack, the attacker doesn’t need to relay
100% of the messages accurately. Instead, they can alter some of them. The app might ask the user
“You need to MFA — do you want to use your passkey, or your backup authenticator code?”, but the
phishing website might modify this page to say “You need to MFA — use your backup authenticator
code” not giving you the option to use your secure passkey.

This can also be applied to accounts that use SSO as the default login method. In this scenario, the
phish kit can select a backup username and password option.

So, you have a situation where even if a phishing-resistant login method exists, the presence of
aless secure backup method means the account is still vulnerable to phishing attacks. The
only way to make a login 100% phishing resistant is to remove backup methods, and/or disable
alternative login flows through conditional access.

> Omn —

Default passkey login

— Om —

Authenticator app

> O

SMS code

User account Target website

Attackers can configure their phishing kits to select
backup, phishable login methods.

https://phishing-techniques.pushsecurity.com/techniques/mfa-downgrade/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Sandbox evasion techniques — turning legit bot protection

against the good guys

The challenge for attackers when using these proxy-based phishing techniques is that it's even
easier to detect in theory. Because security tools know what real Microsoft, Google, Okta, etc. login
pages look like — they can simply look for the real login page, but on the wrong domain.

The key here is that sandbox analysis relies on that process being completely automated — though
I'm calling it a “sandbox”, it's technically the same technology (headless browsers) that's used to
make “bots” that interact with websites. The security industry has been battling web-scraping bots
for decades, triggering the creation of a whole “bot protection” industry. There's even a Gartner
magic quadrant for this (“Web and API Protection”).

What attackers cleverly realized is if security companies are effectively using bots to analyse

their phishing websites, they could use legitimate "bot protection” products to counter them.

The tool of choice at the time of writing is Cloudflare Turnstile — you'll recognize it easily:

Verify you are human ‘

CLOUDFLAREFE

Privacy Terms

Cloudflare Turnstile should come with a trigger warning for security teams
investigating modern phishing attacks.

Virtually all phishing kits of this generation we see today are hosted behind Cloudflare Turnstile or
some other bot protection method (e.g. CAPTCHA).

The reality though is that requiring any user interaction will break these sandbox-type analysis
techniques. Some attackers have taken this to the extreme — putting their phishing website behind
legitimate Google OIDC login pages. In other words, you have to login to a real page to get to the fake
AitM login page. Good luck training users not to fall for that.

https://phishing-techniques.pushsecurity.com/techniques/bot-protection/
https://phishing-techniques.pushsecurity.com/techniques/bot-protection/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security

Attacker-in-the-Middle is table stakes

Attackers don't even need to build these tools themselves. Perhaps the most popular AitM tool is
Evilginx — written as a tool to be used by penetration testers, but, as is so often the case, has
subsequently been adopted by criminal groups. A good example of this is recent activity attributed
to Scattered Spider. All the techniques described so far are table stakes for these tools, and there
are YouTube video tutorials showing you how to run them. It couldn’t be easier.

Detection and response hasn’t kept up

To make matters worse, there are very few security controls in place today that are detecting these
tools. Anything that relies on automated sandbox-type analysis isn’t effective anymore. Bot
protection has seriously impaired email security and proactive scanning solutions.

Some detection techniques are going old school, and doing things like blocking newly registered
domains — but these controls break legitimate websites. Threat intelligence feeds aren’t working
anymore either, because the tools are rarely kept alive for long enough for a human analyst to visit
and analyze them. Instead, they get automated screenshots of Turnstile and then a domain that no
longer resolves. With the advent of automated cloud-based infrastructure, and especially
infrastructure as code, the time taken to acquire a random domain, spin up an Evilginx instance,
send a few emails, and pull them down again is trending to zero.

The one technique that does still work (at least in principle) against this generation of phishing
attacks is web traffic analysis. If you're able to inspect web traffic through a TLS-decrypting web
proxy system, and you look for web traffic that matches signatures for Microsoft, Google, or Okta
login pages, then that is still a viable detection method.

Having said that, in practice, we see many of these attacks working against targets that are
protected behind proxy solutions that promise to do this kind of detection.

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Gen 3: Modern phishing using
professionalized Attacker-in-the-
Middle platforms

The majority of successful phishing attacks today fall into the category of what we're calling
Gen 3 attacks. It's perhaps a mistake to call these Gen 3. Compared to the leap from Gen 1to
Gen 2, these are perhaps closer to Gen 2.5, but you can be the judge!

Part of these attacks is that they are not self-contained web-proxy-like tools, but complex,
customized (and customizable) dynamic web kits. These web applications load themselves
dynamically using highly obfuscated JavaScript code stitched together from multiple web requests,

using a changing key for each request. The decryption keys can be retrieved, but that's not the point
— by doing this the pages are very difficult to analyze, and from a network perspective almost
impossible to signature and therefore detect in real time.

Malicious content
Dynamic generation displayed when

of page content using n conditions are met

multiple web requests

Many detections rely on inspecting the page code to find known-bad indicators.
If the page code is heavily obfuscated, these signatures fail.

Often these phishing kits are delivered as-a-Service in what appears to be more of an affiliate model.
The core crimeware provider hosts a backend cloud service that interacts with the targeted

websites (most commonly Microsoft, then Okta and Google).

The affiliate’s job is to register domains, deploy the frontend phishing sites - which together with the
backend service effectively operate in the same way — but where something like Evilginx operates at
the HTTP-layer, you can think of these tools as being more of a thick-client in the middle operating

more at the application layer.

https://phishing-techniques.pushsecurity.com/techniques/code-obfuscation/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

All the page code, cookies, and even the rendered sites are completely custom and resemble the
original, but the backend still communicates with the real login pages to pass messages back and
forth. These phishing kits retain the core Gen 2 techniques (MFA bypass using AitM, and sandbox

anti-analysis using bot protection) but with highly customized implementation, making detection

way harder.

The main job left for the affiliate is delivering the lures and getting targets to visit these
phishing sites — which is probably why we’ve seen so much recent innovation in this space.

Phishing delivery techniques are evolving

Likely driven more by the spam problem than phishing attacks, email providers have started to filter
mass emails from unknown domains or addresses, and after decades of training to not trust emails,

employees are not responding to (or even seeing) phishing emails at the same levels anymore.

To counter this, attackers are hijacking trusted sources to deliver malicious links camouflaged
behind different sites. This means that even if an email is received, the email is completely
legitimate — it's what comes after once the victim has left the email app/webpage. They're also
abandoning email altogether in favor of alternative channels where security visibility is nonexistent.

@? Link delivery mechanisms \@ Link camouflage techniques

Email from legitimate app/service Email from legitimate app/service

In-app phishing Trusted website hosting

Malvertising URL obfuscation

Instant messenger

Social media
SMS

Al/LLM poisoning
QR codes

Check out the phishing detection evasion techniques matrix for
more examples of these methods in action.

https://phishing-techniques.pushsecurity.com/techniques/aitm-phishing/
https://phishing-techniques.pushsecurity.com/techniques/anti-sandbox/
https://phishing-techniques.pushsecurity.com/techniques/anti-sandbox/
https://phishing-techniques.pushsecurity.com/techniques/email-legitimate-app/
https://phishing-techniques.pushsecurity.com/techniques/email-legitimate-app/
https://phishing-techniques.pushsecurity.com/techniques/trusted-website-hosting/
https://phishing-techniques.pushsecurity.com/techniques/url-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/in-app-phishing/
https://phishing-techniques.pushsecurity.com/techniques/malvertising/
https://phishing-techniques.pushsecurity.com/techniques/instant-messenger/
https://phishing-techniques.pushsecurity.com/techniques/social-media/
https://phishing-techniques.pushsecurity.com/techniques/sms/
https://phishing-techniques.pushsecurity.com/techniques/ai-poisoning/
https://phishing-techniques.pushsecurity.com/techniques/qr-codes/
https://phishing-techniques.pushsecurity.com/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Using trusted websites to host phishing links —

and deliver phishing messages

Attackers are increasingly using trusted websites to host phishing content. Any service that allows

you to host a page or share a document publicly can be used to do this.

Often, these apps don't just host the document or page that includes your link (to the phishing

website), it will even send your phishing message to the victim — through in-app notifications or by
sending an automated email to the recipient via a third-party service.

Using trusted hosting providers and services reduces the chance of a URL being flagged by link
analysis tools, while automated emails sent directly from third-party services are often expected
and legitimate. This means the attacker doesn’t have to invest any time or effort into building up
their email reputation — they can just piggyback on a trusted domain.

This technique is similar to “Living of the Land” binaries (LOLBins) used by attackers in the era of

endpoint attacks.

Attacker hosts phishing Attacker hosts Automated email

site on trusted domain,
e.g.

>Azure Front Door
>Google Sites
>Cloudflare Pages
>Amazon S3
>Linode Object Storage

malicious link on third-
party service, e.g.

>Google Forms
>Google Sites
>GitHub
>DocusSign
>SharePoint
>Adobe

delivered from third-
party service

Attackers are combining trusted domains with third-party app

delivery to bypass email security filters.

https://phishing-techniques.pushsecurity.com/techniques/trusted-website-hosting/
https://phishing-techniques.pushsecurity.com/techniques/in-app-phishing/
https://phishing-techniques.pushsecurity.com/techniques/email-legitimate-app/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Delivering links via non-email channels

Delivering phishing through email has been the de facto delivery technique for so long, we can forget
that many other options exist. One thing is for sure — the old days of putting a phishing URL directly

into an email without some form of camouflage or obfuscation are gone.

Automated email 'b

Social media

Instant messenger SMS & QR Codes

Third-party app

Phishing delivery channels are expanding.

As businesses shift to new communication channels like IM apps (e.g. Slack and Teams), a new vector

for phishing is opening up. This makes complete sense. If Slack is where employees work, then that's
the best place to target them, and with the drive to make Slack (and Teams) a more public

communications platform, this is becoming easier than ever.

Other useful channels include social media apps like LinkedIn, Facebook/Meta, even Reddit.

Wherever someone you don’t know can send you a message, you should expect to receive
phishing lures there.

Malvertising is another common technique, where attackers distribute malicious links via paid
search engine ads or SEO poisoning (though admittedly it's harder to get your malicious content
ranked on SEO than a paid ad). This takes advantage of the fact that many employees continue to
search for the business apps they use every day rather than bookmark them. The malvertising link
appears to be legitimate, and is usually ranked first — unsuspecting users that aren’t paying
attention to the “sponsored” caption will be easily fooled.

https://phishing-techniques.pushsecurity.com/techniques/instant-messenger/
https://pushsecurity.com/blog/slack-phishing-for-initial-access/
https://pushsecurity.com/blog/phishing-microsoft-teams-for-initial-access/
https://phishing-techniques.pushsecurity.com/techniques/social-media/
https://phishing-techniques.pushsecurity.com/techniques/malvertising/
https://phishing-techniques.pushsecurity.com/techniques/instant-messenger/
https://phishing-techniques.pushsecurity.com/techniques/in-app-phishing/
https://phishing-techniques.pushsecurity.com/techniques/sms/
https://phishing-techniques.pushsecurity.com/techniques/qr-codes/
https://phishing-techniques.pushsecurity.com/techniques/social-media/
https://phishing-techniques.pushsecurity.com/techniques/email-legitimate-app/
https://phishing-techniques.pushsecurity.com/techniques/email-attachment/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

We recently intercepted an example that we later confirmed to be linked to Scattered Spider activity.

In this case, the attackers were impersonating Onfido, a digital identity verification service.

Google Onfido X

All News Images Videos Shortvideos Maps Forums

Sponsored

dashboard.onfido.us.com
https://dashboard.onfido.us.com :

Malvertising % Onfido Sign In

Sign In To Onfido Easily — Login to the Onfido client portal. Streamline identity
verification, protect against fraud. Secure login admins to the Onfido dashboard.
Easily manage verification, comply with KYC.

Sponsored

Onfido

https://onfido.com :

Legitimate % Onfido

Identity Verification — Onboard more users, stop fraud and navigate KYC. Onfido
makes identity verification simple. Partner with an end-to-end identifty verification
platform and get results in seconds. Rapid Screening Process. Eliminate Dropout.

Malvertising example intercepted by Push.

Further evading URL-based detections

It's worth noting a couple of additional techniques attackers are using to further prolong their
phishing campaigns. Generally, attackers expect their phishing sites to have a limited lifespan. But

they're extracting the most out of them by acquiring domains on an industrial scale, and using

domain rotation, redirection, and load balancing to both protect the initial URLs being seeded out to

victims from being flagged, and serving different phishing pages to victims — continually refreshing
them from a pool of URLs.

Using redirect chains Using load balancing to
(via trusted sites) to rotate the phishing
protect initial URLs page URL served

https://pushsecurity.com/blog/scattered-spider-ttp-evolution-in-2025/
https://phishing-techniques.pushsecurity.com/techniques/mass-domain-registration/
https://phishing-techniques.pushsecurity.com/techniques/domain-rotation-redirection/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security

Anti-analysis and obfuscation techniques

A large part of the reason to put in the effort of creating and maintaining a fully custom
phishing kit is that it's possible to significantly increase the difficulty of analysing and
detecting these kits using traditional detection tools.

Most modern phishing kits make full use of this fact and implement a range of techniques to
frustrate analysts, sandboxes, and detection controls.

We've already covered a few of the tricks attackers are using — namely, code obfuscation, bot

protection, and domain rotation, redirection, and load balancing, but let's take a closer look at some
of the more creative ones we haven’t mentioned yet.

@ Anti-analysis @ Page obfuscation

Domain rotation, redirection, DOM obfuscation
& load balancing

Page obfuscation

Bot protection

Code obfuscation

Legitimate OIDC logins

Visual obfuscation

Delayed execution

Desktop control & streaming

Single-use links

Cross-domain iframes

Conditional loading

Anti-sandbox

Check out the phishing detection evasion techniques matrix for
more examples of these methods in action.

https://phishing-techniques.pushsecurity.com/techniques/code-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/bot-protection/
https://phishing-techniques.pushsecurity.com/techniques/bot-protection/
https://phishing-techniques.pushsecurity.com/techniques/domain-rotation-redirection/
https://phishing-techniques.pushsecurity.com/techniques/domain-rotation-redirection/
https://phishing-techniques.pushsecurity.com/techniques/domain-rotation-redirection/
https://phishing-techniques.pushsecurity.com/techniques/dom-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/page-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/desktop-control/
https://phishing-techniques.pushsecurity.com/techniques/cross-domain-iframes/
https://phishing-techniques.pushsecurity.com/techniques/visual-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/code-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/bot-protection/
https://phishing-techniques.pushsecurity.com/techniques/oidc-logins/
https://phishing-techniques.pushsecurity.com/techniques/delayed-execution/
https://phishing-techniques.pushsecurity.com/techniques/single-use-links/
https://phishing-techniques.pushsecurity.com/techniques/conditional-loading/
https://phishing-techniques.pushsecurity.com/techniques/anti-sandbox/
https://phishing-techniques.pushsecurity.com/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

Conditional loading & anti-sandbox countermeasures

To prevent analysis of their phishing pages (and consequently, the page being flagged as
malicious) attackers are using multiple techniques to block both human analysts and bots.

For example, attackers are using anti-sandbox measures to check for indicators that the page is
being accessed by a security tool or analyst — looking for evidence of debuggers, running inside a
VM, or analysis tools running in the browser environment. Some of these are a minor inconvenience,
like adding debug statements into page scripts causing breakpoints to fire and the page to stop
loading when a visitor opens dev tools to inspect the app behavior (or even disabling shortcuts to
open dev tools in the first place).

Others are far trickier to get around, using conditional loading to only serve the correct (malicious)

web page when the user accesses the page from the correct location, based on geo-IP. This makes
the site load a benign random page if you e.g. visit it from a Madrid IP address, but a malicious
phishing page if visited from Barcelona. Attackers have also been seen redirecting to a benign page if
you don't provide a pre-defined target email address/domain, or if you don't follow a specific path to
the URL to prevent a page being directly loaded outside of the phishing campaign. Evilginx is
probably the most common example of this, where unwanted visitors are “rick rolled”.

Other even more nefarious techniques are less common, like including a single-use token in the link

URL that loads a phishing kit the first time you visit it, but redirects you somewhere benign if you
attempt to visit it again. In this case you have one chance to view the page source and detect it — no
parallel or after-the-fact analysis is possible, you have to be there when it happens the first time or
you'll miss your chance.

This is crippling for sandbox-based detections that run in response to a user opening a re-

written link in an email.

Detecting analysis Only triggering for
tools and configs intended victims

o ¢® o % o

Only triggering the Only loading if the Blocking subsequent
first time the link is correct URL path is access attempts from
opened followed anlP

Anti-analysis techniques used by phishing kits.

https://phishing-techniques.pushsecurity.com/techniques/anti-sandbox/
https://phishing-techniques.pushsecurity.com/techniques/conditional-loading/
https://en.wikipedia.org/wiki/Rickrolling
https://phishing-techniques.pushsecurity.com/techniques/single-use-links/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

DOM, page, and code obfuscation

If a page can be loaded by a security tool or analyst, the next step is to inspect the page elements to

detect malicious or anomalous content.

Since the vast majority of phishing pages impersonate a Microsoft, Google, or Okta login page, web
proxies started to search for matches with the genuine source code for these pages, but hosted on
the wrong domain (i.e. a phishing site impersonating that login page).

To counter this, attackers are randomizing every part of the data that is being analyzed in the
proxy or network traffic analysis tool — i.e. the DOM and web page content.

Rather than loading a complicated HTML page, then loading some JS components to make the page
reactive, these kits often use a very simple “loader” HTML page. This HTML might not even contain a
<html> or <head> and <body> tags, but a single script tag that loads obfuscated JS, which in turn
replaces the page’s DOM and then proceeds to build the page dynamically.

Page code is often obfuscated using encryption libraries or simple XOR encryption. The code must

include the decryption keys so that it can load in the browser. But without analysing or running the
code, the web payloads look completely random from a network level — making it extremely tough to
detect in that way as there are no static signatures.

Visual detection evasion

Once a sandbox loads a web site, it must identify whether it is a phishing attempt. One way to do this
is to take a screenshot of the browser window and run the rendered page through a computer vision
model to compare it to a known or often targeted login page. In other words, if it looks like the
Microsoft login page, but isn't on a Microsoft domain, it's probably phishing.

This technique is particularly effective at detecting reverse proxy tools that don't implement bot
protection, and so some of those tools are using visual obfuscation techniques to inject scripts that

subtly change the page. This might be applying an overlay blur, or a subtle color shift that is not
noticeable by a human, but enough to throw off an automated comparison.

https://phishing-techniques.pushsecurity.com/techniques/dom-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/page-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/code-obfuscation/
https://phishing-techniques.pushsecurity.com/techniques/visual-obfuscation/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security

Part of the benefit with a kit that implements a custom frontend is that you can modify and
customize the page you display almost infinitely. Practically this results in templates for
commonly phished pages that look similar enough to the originals, but where the layout,
backgrounds, logos, and colors are changed enough so as not to trigger detections based on real
page matching.

Page title/text

Images

Background

Phish kits are dynamically generating frontend elements to defeat visual detections.

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/O Push Security

New observations and future trends

Attacker innovation isn't slowing down, and we're already seeing further detection evasion
improvements in phishing kits.

Using cross-domain iframes to block injected detections

Recently, phishing kits have been seen loading the core of the page inside a cross-domain iframe. At
a glance this extra step doesn’t seem to provide much additional network obfuscation, but one
possible reason is to protect against web-proxy based detections that function by injecting JS
<scripts> to run detections once web pages actually load in the browser — a way of getting around
the shortcomings of network-based detections.

Cross-domain iframes are useful in this case because the injected scripts run in unprivileged context

(like any other normal script) and therefore are prevented from accessing what happens inside the
iframe — where the malicious code lives. Controls that run in the browser in a privileged position
(like an extension) are needed to circumvent these protections.

Widening the net: Expanded app targeting

Attackers have also realized how much valuable data exists in Shadow SaaS as attacks against apps
like Snowflake, and have begun to target apps like Slack, Mailchimp, Postman, GitHub, and other
commonly-used business apps directly — bypassing Identity Provider (IdP) accounts (MS, Google,
Okta, etc.) that typically have more robust authentication and access controls in place.

The long tail of SaaS services outside of the most well-known enterprise cloud apps are often an
easier target because they:

« Often have fewer security configuration options available — from not supporting SSO (or
specifically SAML) to offering weaker login method enforcement (e.g. allowing several login
methods to be active at once by default, creating the scope for ghost logins.

» SSO onboarding typically happens over a longer period, on an app-by-app basis. It could take
years for many enterprises to formally review, risk assess, and onboard every app that employees
have self-adopted and are already using.

That said, attackers will continue to target |dP accounts and enterprise cloud as the targets with the

highest possible payoff in terms of the potential blast radius of a compromise.

https://phishing-techniques.pushsecurity.com/techniques/cross-domain-iframes/
https://phishing-techniques.pushsecurity.com/techniques/saas-admins/
https://phishing-techniques.pushsecurity.com/techniques/apps-weak-security/
https://phishing-techniques.pushsecurity.com/techniques/apps-weak-security/
https://github.com/pushsecurity/saas-attacks/blob/main/techniques/ghost_logins/description.md
https://phishing-techniques.pushsecurity.com/techniques/identity-provider/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security

Consent phishing and other ways around “phishing-resistant”
authentication

As passkeys continue to be more widely deployed and IdPs are increasingly hardened, attacks are

not only moving to non-SSO accounts, but they are also shifting to attacks that circumvent the
standard authentication process entirely.

OAuth consent phishing involves tricking a user into approving a malicious OAuth integration —
effectively giving the attacker a programmatic token that can be used to access their account.

This was one of the first techniques we added to the SaaS attacks matrix and has been known for
the better part of a decade. Despite this, it's not yet become widely adopted at anything like the
scale of credential phishing attacks, but may well do so when passkeys and other access controls
become effective and widespread enough to put a dent in typical phishing attacks.

=& Microsoft
user@domain.com

o Permissions requested

This app would like to:

v Read your mail

' Maintain access to data

v Read your mailbox settings

v Sign you in and read your profile

v Send mail as you

v Read your calendars

v Read your online meetings

Il Consent on behalf of your organization

If you're interested in other emerging techniques like consent phishing, you can also read more about
device code phishing, verification phishing, and app-specific password phishing.

https://phishing-techniques.pushsecurity.com/techniques/consent-phishing/
https://github.com/pushsecurity/saas-attacks
https://phishing-techniques.pushsecurity.com/techniques/device-code-phishing/
https://phishing-techniques.pushsecurity.com/techniques/verification-phishing/
https://phishing-techniques.pushsecurity.com/techniques/app-specific-passwords/
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

Push Security
Push is like EDR, but for your browser

At Push, we use a browser agent to detect, intercept, and shut down phishing attacks in real-
time, as they happen in the user’s browser.

Push changes where phishing protection happens, from upstream detection to point-of-interaction
control. Instead of chasing malicious links through email gateways or external threat feeds, Push
embeds lightweight, always-on protection directly, as users go about their work in the browser.

Push monitors what's happening in each session: how pages are built, how they behave, and how
users interact with them. That means it can recognize when a login prompt doesn’t match your
identity provider, or when a script behaves like part of a phishing toolkit.

Who is interacting Has a corp username
with the page? been entered?

Is the page a clone of \ /. Is a password
alegitimate page? being entered?

® ® ® notmicrosoft.com ‘

Does the page Does the password
contain a login field? belong to this site?
Microsoft 365

Is there a phishing Is the user clicking
Password*

toolkit running? the sign-in button?

Keep me signed in on this device

Push provides deep browser context to detect and block phishing attacks.

Push tackles these attacks using a new type of telemetry. We don’t look at emails, we don’t
look at URLs or proxy logs, there’s no list of bad domains or Tl feeds. Push provides protection
at the last mile to stop even the most sophisticated attacks and advanced phishing kits.

https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

/0O Push Security

No matter what the delivery vector is, all roads eventually lead the user to a malicious page,
accessed in their web browser. The browser is where page rendering meets user input, code
execution and network traffic — and therefore browser security agents present the most valuable
opportunity to detect and block current and future generations of attacks.

® @ ¢ phishing.com .

Phishing danger detected

The website you are trying to access is using phishing
software that can steal your credentials. For your
security, we have blocked access to this page.

No other solution takes the power of the browser and combines it with identity data, fine-
grained browser telemetry, and research-driven detection engineering to stop attacks.

It's not just advanced phishing attacks either. Push’'s browser-based platform protects against
credential stuffing, password spraying and session hijacking using stolen session tokens. You can also
use Push to find and fix identity vulnerabilities across every app that your employees use, like: ghost
logins; SSO coverage gaps; MFA gaps; weak, breached and reused passwords; risky OAuth
integrations; and more.

https://pushsecurity.com/demo/?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper
https://pushsecurity.com/demo?utm_campaign=18916228-FY25Q3_Phishing-evolution-whitepaper&utm_source=phishing-whitepaper

	Introduction
	Gen 1: Classic phishing (in an endpoint-centric world)
	Setting the scene: A short history of phishing security
	Email security: Blocklists, URL rewriting and “web sandboxes”
	Network security: Web proxies and proactive scanning
	Gen 2: Phishing evolves to defeat detections and bypass MFA
	Bypassing MFA with Attacker-in-the-Middle phishing
	Bypassing passkeys with downgrade attacks
	Sandbox evasion techniques — turning legit bot protection against the good guys
	Gen 3: Modern phishing using professionalized AitM platforms
	Phishing delivery techniques are evolving
	Anti-analysis and obfuscation techniques
	New observations and future trends
	Push is like EDR, but for your browser

